The effect of flue gas contaminants on electrochemical reduction of CO2 to methyl formate in a dual methanol/water electrolysis system

被引:16
|
作者
Gautam, Manu [1 ]
Hofsommer, Dillon T. [2 ]
Uttarwar, Sandesh S. [1 ]
Theaker, Nolan [3 ]
Paxton, William F. [1 ]
Grapperhaus, Craig A. [2 ]
Spurgeon, Joshua M. [1 ]
机构
[1] Univ Louisville, Conn Ctr Renewable Energy Res, Louisville, KY 40292 USA
[2] Univ Louisville, Dept Chem, 2320 South Brook St, Louisville, KY 40292 USA
[3] Univ North Dakota, Inst Energy Studies, Grand Forks, ND 58202 USA
来源
CHEM CATALYSIS | 2022年 / 2卷 / 09期
关键词
HIGH-CURRENT DENSITY; CARBON-DIOXIDE; HIGH-EFFICIENCY; FORMIC-ACID; ELECTROREDUCTION; CONVERSION; CATALYSTS; SOLUBILITY; GOLD; LEAD;
D O I
10.1016/j.checat.2022.08.001
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
CO2 electroreduction to value-added products has promise as a scalable technique for mitigating climate change, but CO2 purification requirements raise the overall process cost. Direct reduction of flue gas is thus an attractive approach, but the sensitivity of the catalyst activity to flue gas contaminants and increased hydrogen evolution with diluted CO2 have been major challenges. Herein, flue gas electroreduction in a methyl formate synthesis route has been investigated on a Pb-catalyzed electrode in acidic methanol catholyte with an aqueous anolyte for promotion of a sustainable water oxidation half-reaction. Contaminant concentrations of 50 ppm SO2 and NO each had a minimal effect on the product faradaic efficiencies, whereas 4% O-2 led to a notable improvement in partial current density for methyl formate attributed to the improved durability of the catalyst surface oxide. Decreased CO2 concentration showed a corresponding decline in current density attributed to CO2 mass transfer limitations.
引用
收藏
页码:2364 / 2378
页数:15
相关论文
共 50 条
  • [21] CO2 abatement by methanol production from flue-gas in methanol plant
    Sayah, A.K.
    Hosseinabadi, Sh
    Farazar, M.
    World Academy of Science, Engineering and Technology, 2010, 45 : 90 - 93
  • [22] CO2 abatement by methanol production from flue-gas in methanol plant
    Sayah, A.K.
    Hosseinabadi, Sh
    Farazar, M.
    World Academy of Science, Engineering and Technology, 2010, 70 : 90 - 93
  • [23] Electrochemical reduction of CO2 in solid oxide electrolysis cells
    Zhan, Zhongliang
    Zhao, Lin
    JOURNAL OF POWER SOURCES, 2010, 195 (21) : 7250 - 7254
  • [24] Electrochemical reduction of CO2 in solid oxide electrolysis cells
    Zhang, Lixiao
    Hu, Shiqing
    Zhu, Xuefeng
    Yang, Weishen
    JOURNAL OF ENERGY CHEMISTRY, 2017, 26 (04) : 593 - 601
  • [25] Electrochemical reduction of CO2 in solid oxide electrolysis cells
    Lixiao Zhang
    Shiqing Hu
    Xuefeng Zhu
    Weishen Yang
    Journal of Energy Chemistry , 2017, (04) : 593 - 601
  • [26] Effect of sodium cation on the electrochemical reduction of CO2 at a copper electrode in methanol
    Satoshi Kaneco
    Kenji Iiba
    Hideyuki Katsumata
    Tohru Suzuki
    Kiyohisa Ohta
    Journal of Solid State Electrochemistry, 2007, 11 : 490 - 495
  • [27] Effect of sodium cation on the electrochemical reduction of CO2 at a copper electrode in methanol
    Kaneco, Satoshi
    Iiba, Kenji
    Katsumata, Hideyuki
    Suzuki, Tohru
    Ohta, Kiyohisa
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2007, 11 (04) : 490 - 495
  • [28] Electrochemical Reduction of CO2: Effect of Convective CO2 Supply in Gas Diffusion Electrodes
    Duarte, Miguel
    De Mot, Bert
    Hereijgers, Jonas
    Breugelmans, Tom
    CHEMELECTROCHEM, 2019, 6 (22): : 5596 - 5602
  • [29] Efficient Electrochemical Reduction of CO2 to Formate in Methanol Solutions by Mn-Functionalized Electrodes in the Presence of Amines
    Stuardi, Francesca Marocco
    Tiozzo, Arianna
    Rotundo, Laura
    Leclaire, Julien
    Gobetto, Roberto
    Nervi, Carlo
    CHEMISTRY-A EUROPEAN JOURNAL, 2022, 28 (37)
  • [30] Nanoporous tin oxides for efficient electrochemical CO2 reduction to formate
    Liu, Hai
    Miao, Baiyu
    Chuai, Hongyuan
    Chen, Xiaoyi
    Zhang, Sheng
    Ma, Xinbin
    GREEN CHEMICAL ENGINEERING, 2022, 3 (02) : 138 - 145