On linear prediction for stationary random fields with nonsymmetrical half-plane past

被引:0
作者
Arezki, Ouerdia [1 ]
Hamaz, Abdelghani [1 ]
机构
[1] Mouloud Mammeri Univ Tizi Ouzou, Lab Math Pures & Appl, Tizi Ouzou 15000, Algeria
关键词
Stationary random fields; linear prediction; multi-step prediction; mean square convergence; FOURIER SERIES; INTERPOLATION;
D O I
10.1080/03610926.2020.1837880
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An explicit autoregressive series representation for the best multi-step ahead linear predictor of stationary random fields with nonsymmetrical half-plane past (NSHP) is established. Necessary and sufficient condition for the mean square convergence of these series is given. Moreover, step recursive relations between the prediction coefficients for the infinite past predictor are provided, these relations are used to calculate explicitly the multi-step prediction coefficients. Some specific examples to validate the applicability of our relations are presented.
引用
收藏
页码:5298 / 5309
页数:12
相关论文
共 23 条
[1]  
Anderson T. W., 1971, The Statistical Analysis of Time Series
[2]   Asymptotic inference for an unstable spatial ar model [J].
Baran, S ;
Pap, G ;
van Zuijlen, MCA .
STATISTICS, 2004, 38 (06) :465-482
[3]   WOMEN AND RELIGIOUS NATIONALISM IN INDIA - AN INTRODUCTION [J].
BASU, A .
BULLETIN OF CONCERNED ASIAN SCHOLARS, 1993, 25 (04) :3-4
[4]   Recursive relations for multistep prediction of a stationary time series [J].
Bondon, P .
JOURNAL OF TIME SERIES ANALYSIS, 2001, 22 (04) :399-410
[5]   Prediction with incomplete past and interpolation of missing values [J].
Cheng, R ;
Pourahmadi, M .
STATISTICS & PROBABILITY LETTERS, 1997, 33 (04) :341-346
[6]  
Cheng V, 2015, ADV E-BUS RES, P139, DOI 10.4018/978-1-4666-8133-0.ch007
[7]  
Cressie NAC, 1993, Statistics for spatial data, DOI [10.1002/9781119115151, DOI 10.1002/9781119115151]
[8]  
Francos J. M., 1990, THESIS
[9]   A UNIFIED TEXTURE MODEL-BASED ON A 2-D WOLD-LIKE DECOMPOSITION [J].
FRANCOS, JM ;
MEIRI, AZ ;
PORAT, B .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1993, 41 (08) :2665-2678
[10]  
Gikhman I.I., 2004, THEORY STOCHASTIC PR