Understanding deep learning in land use classification based on Sentinel-2 time series

被引:132
作者
Campos-Taberner, Manuel [1 ]
Javier Garcia-Haro, Francisco [1 ]
Martinez, Beatriz [1 ]
Izquierdo-Verdiguier, Emma [2 ]
Atzberger, Clement [2 ]
Camps-Valls, Gustau [3 ]
Amparo Gilabert, Maria [1 ]
机构
[1] Univ Valencia, Environm Remote Sensing Grp UV ERS, Valencia 46100, Spain
[2] Univ Nat Resources & Life Sci, Inst Geomat, Vienna BOKU, Peter Jordan Str 82, A-1190 Vienna, Austria
[3] Univ Valencia, IPL, Paterna 46980, Spain
基金
欧洲研究理事会;
关键词
CONVOLUTIONAL NEURAL-NETWORKS; ATTENTION-MECHANISM; REPRESENTATIONS; LSTM;
D O I
10.1038/s41598-020-74215-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The use of deep learning (DL) approaches for the analysis of remote sensing (RS) data is rapidly increasing. DL techniques have provided excellent results in applications ranging from parameter estimation to image classification and anomaly detection. Although the vast majority of studies report precision indicators, there is a lack of studies dealing with the interpretability of the predictions. This shortcoming hampers a wider adoption of DL approaches by a wider users community, as model's decisions are not accountable. In applications that involve the management of public budgets or policy compliance, a better interpretability of predictions is strictly required. This work aims to deepen the understanding of a recurrent neural network for land use classification based on Sentinel-2 time series in the context of the European Common Agricultural Policy (CAP). This permits to address the relevance of predictors in the classification process leading to an improved understanding of the behaviour of the network. The conducted analysis demonstrates that the red and near infrared Sentinel-2 bands convey the most useful information. With respect to the temporal information, the features derived from summer acquisitions were the most influential. These results contribute to the understanding of models used for decision making in the CAP to accomplish the European Green Deal (EGD) designed in order to counteract climate change, to protect biodiversity and ecosystems, and to ensure a fair economic return for farmers.
引用
收藏
页数:12
相关论文
共 61 条
[1]  
[Anonymous], 2016, ABDA, 16
[2]  
[Anonymous], 2018, Official Journal of the European Union, V61, P1
[3]  
[Anonymous], 2011, A resource-efficient Europe - Flagship initiative under the Europe 2020 Strategy
[4]  
Arras L., 2019, EXPLAINABLE AI INTER, P211, DOI [DOI 10.1007/978-3-030-28954-6_11, DOI 10.1007/978-3-030-28954-611, 10.1007/978-3-030-28954-611]
[5]   A Copernicus Sentinel-1 and Sentinel-2 Classification Framework for the 2020+ European Common Agricultural Policy: A Case Study in Valencia (Spain) [J].
Campos-Taberner, Manuel ;
Javier Garcia-Haro, Francisco ;
Martinez, Beatriz ;
Sanchez-Ruiz, Sergio ;
Amparo Gilabert, Maria .
AGRONOMY-BASEL, 2019, 9 (09)
[6]   A Critical Comparison of Remote Sensing Leaf Area Index Estimates over Rice-Cultivated Areas: From Sentinel-2 and Landsat-7/8 to MODIS, GEOV1 and EUMETSAT Polar System [J].
Campos-Taberner, Manuel ;
Javier Garcia-Haro, Francisco ;
Busetto, Lorenzo ;
Ranghetti, Luigi ;
Martinez, Beatriz ;
Amparo Gilabert, Maria ;
Camps-Valls, Gustau ;
Camacho, Fernando ;
Boschetti, Mirco .
REMOTE SENSING, 2018, 10 (05)
[7]   Exploitation of SAR and Optical Sentinel Data to Detect Rice Crop and Estimate Seasonal Dynamics of Leaf Area Index [J].
Campos-Taberner, Manuel ;
Javier Garcia-Haro, Francisco ;
Camps-Valls, Gustau ;
Grau-Muedra, Goncal ;
Nutini, Francesco ;
Busetto, Lorenzo ;
Katsantonis, Dimitrios ;
Stavrakoudis, Dimitris ;
Minakou, Chara ;
Gatti, Luca ;
Barbieri, Massimo ;
Holecz, Francesco ;
Stroppiana, Daniela ;
Boschetti, Mirco .
REMOTE SENSING, 2017, 9 (03)
[8]   Processing of Extremely High-Resolution LiDAR and RGB Data: Outcome of the 2015 IEEE GRSS Data Fusion Contest-Part A: 2-D Contest [J].
Campos-Taberner, Manuel ;
Romero-Soriano, Adriana ;
Gatta, Carlo ;
Camps-Valls, Gustau ;
Lagrange, Adrien ;
Le Saux, Bertrand ;
Beaupere, Anne ;
Boulch, Alexandre ;
Chan-Hon-Tong, Adrien ;
Herbin, Stephane ;
Randrianarivo, Hicham ;
Ferecatu, Marin ;
Shimoni, Michal ;
Moser, Gabriele ;
Tuia, Devis .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (12) :5547-5559
[9]   Co-Orbital Sentinel 1 and 2 for LULC Mapping with Emphasis on Wetlands in a Mediterranean Setting Based on Machine Learning [J].
Chatziantoniou, Andromachi ;
Petropoulos, George P. ;
Psomiadis, Emmanouil .
REMOTE SENSING, 2017, 9 (12)
[10]   Deep Learning-Based Classification of Hyperspectral Data [J].
Chen, Yushi ;
Lin, Zhouhan ;
Zhao, Xing ;
Wang, Gang ;
Gu, Yanfeng .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) :2094-2107