Polyhedral Oligosilsesquioxane-Modified Boron Nitride Nanotube Based Epoxy Nanocomposites: An Ideal Dielectric Material with High Thermal Conductivity

被引:554
作者
Huang, Xingyi [1 ]
Zhi, Chunyi [2 ]
Jiang, Pingkai [1 ]
Golberg, Dmitri [3 ]
Bando, Yoshio [3 ]
Tanaka, Toshikatsu [4 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Polymer Sci & Engn, Shanghai Key Lab Elect Insulat & Thermal Aging, Shanghai 200240, Peoples R China
[2] City Univ Hong Kong, Dept Phys & Mat Sci, Kowloon, Hong Kong, Peoples R China
[3] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton MANA, Tsukuba, Ibaraki 3050044, Japan
[4] Waseda Univ, IPS Res Cente, Kitakyushu, Fukuoka, Japan
基金
中国国家自然科学基金;
关键词
boron nitride nanotubes; nanocomposites; low dielectric constant; low dielectric loss; thermal conductivity; POLYMER NANOCOMPOSITES; GRAPHITE NANOPLATELET; ALUMINUM NITRIDE; BN NANOTUBES; COMPOSITES; FUNCTIONALIZATION; INTERFACE; PURE; TRANSPORT; RESIN;
D O I
10.1002/adfm.201201824
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Dielectric polymer composites with high thermal conductivity are very promising for microelectronic packaging and thermal management application in new energy systems such as solar cells and light emitting diodes (LEDs). However, a well-known paradox is that conventional composites with high thermal conductivity usually suffer from the high dielectric constant and high dielectric loss, while on the other hand, composite materials with excellent dielectric properties usually possess low thermal conductivity. In this work, an ideal dielectric thermally conductive epoxy nanocomposite is successfully fabricated using polyhedral oligosilsesquioxane (POSS) functionalized boron nitride nanotubes (BNNTs) as fillers. The nanocomposites with 30 wt% fraction of POSS modified BNNTs exhibit much lower dielectric constant, dielectric loss tangent, and coefficient of thermal expansion in comparison with the pure epoxy resin. As an example, below 100 Hz, the dielectric loss of the nanocomposites with 20 and 30 wt% BNNTs is reduced by one order of magnitude in comparison with the pure epoxy resin. Moreover, the nanocomposites show a dramatic thermal conductivity enhancement of 1360% in comparison with the pristine epoxy resin at a BNNT loading fraction of 30 wt%. The merits of the designed composites are suggested to originate from the excellent intrinsic properties of embedded BNNTs, effective surface modification by POSS molecules, and carefully developed composite preparation methods.
引用
收藏
页码:1824 / 1831
页数:8
相关论文
共 66 条
[1]   Raman spectroscopy of single-wall boron nitride nanotubes [J].
Arenal, R. ;
Ferrari, A. C. ;
Reich, S. ;
Wirtz, L. ;
Mevellec, J. -Y. ;
Lefrant, S. ;
Rubio, A. ;
Loiseau, A. .
NANO LETTERS, 2006, 6 (08) :1812-1816
[2]   Deformation-driven electrical transport of individual boron nitride nanotubes [J].
Bai, Xuedong ;
Golberg, Dmitri ;
Bando, Yoshio ;
Zhi, Chunyi ;
Tang, Chengchun ;
Mitome, Masanori ;
Kurashima, Keiji .
NANO LETTERS, 2007, 7 (03) :632-637
[3]   Porous low dielectric constant materials for microelectronics [J].
Baklanov, MR ;
Maex, K .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 364 (1838) :201-215
[4]   Carbon Nanotube Microarchitectures for Enhanced Thermal Conduction at Ultra low Mass Fraction in Polymer Composites [J].
Bozlar, Michael ;
He, Delong ;
Bai, Jinbo ;
Chalopin, Yann ;
Mingo, Natalio ;
Volz, Sebastian .
ADVANCED MATERIALS, 2010, 22 (14) :1654-+
[5]   Isotope effect on the thermal conductivity of boron nitride nanotubes [J].
Chang, C. W. ;
Fennimore, A. M. ;
Afanasiev, A. ;
Okawa, D. ;
Ikuno, T. ;
Garcia, H. ;
Li, Deyu ;
Majumdar, A. ;
Zettl, A. .
PHYSICAL REVIEW LETTERS, 2006, 97 (08)
[6]   Thermal conductivity of carbon nanotubes [J].
Che, JW ;
Çagin, T ;
Goddard, WA .
NANOTECHNOLOGY, 2000, 11 (02) :65-69
[7]   Synthesis of boron nitride nanotubes at low temperatures using reactive ball milling [J].
Chen, Y ;
Fitz Gerald, JD ;
Williams, JS ;
Bulcock, S .
CHEMICAL PHYSICS LETTERS, 1999, 299 (3-4) :260-264
[8]   Multiscale modeling of thermal conductivity of polymer/carbon nanocomposites [J].
Clancy, T. C. ;
Frankland, S. J. V. ;
Hinkley, J. A. ;
Gates, T. S. .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2010, 49 (09) :1555-1560
[9]   Structural peculiarities of in situ deformation of a multi-walled BN nanotube inside a high-resolution analytical transmission electron microscope [J].
Golberg, D. ;
Bai, X. D. ;
Mitome, M. ;
Tang, C. C. ;
Zhi, C. Y. ;
Bando, Y. .
ACTA MATERIALIA, 2007, 55 (04) :1293-1298
[10]   Functionalization and solubilization of inorganic nanostructures and carbon nanotubes by employing organosilicon and organotin reagents [J].
Gomathi, A. ;
Hoseini, S. Jafar ;
Rao, C. N. R. .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (07) :988-995