Dissipative continuous Euler flows

被引:216
作者
De Lellis, Camillo [1 ]
Szekelyhidi, Laszlo, Jr. [2 ]
机构
[1] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
[2] Univ Leipzig, Inst Math, D-04103 Leipzig, Germany
基金
欧洲研究理事会;
关键词
WEAK SOLUTIONS; ENERGY;
D O I
10.1007/s00222-012-0429-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show the existence of continuous periodic solutions of the 3D incompressible Euler equations which dissipate the total kinetic energy.
引用
收藏
页码:377 / 407
页数:31
相关论文
共 28 条
[1]  
[Anonymous], 2002, GRADUATE STUDIES MAT
[2]  
[Anonymous], 1990, CAMBRIDGE TRACTS MAT
[3]  
Chiodaroli E., 2012, PREPRINT
[4]   ONSAGER CONJECTURE ON THE ENERGY-CONSERVATION FOR SOLUTIONS OF EULER EQUATION [J].
CONSTANTIN, P ;
TITI, ES ;
WEINAN, F .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (01) :207-209
[5]   THE BELTRAMI SPECTRUM FOR INCOMPRESSIBLE FLUID-FLOWS [J].
CONSTANTIN, P ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 115 (03) :435-456
[6]  
Conti S., 2012, Nonlinear Partial Differ. Equ., Proc. Abel Symposium, V7, P83
[7]   Lack of Uniqueness for Weak Solutions of the Incompressible Porous Media Equation [J].
Cordoba, Diego ;
Faraco, Daniel ;
Gancedo, Francisco .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 200 (03) :725-746
[8]  
De Lellis C., 2011, PREPRINT
[9]   The Euler equations as a differential inclusion [J].
De Lellis, Camillo ;
Szekelyhidi, Laszlo, Jr. .
ANNALS OF MATHEMATICS, 2009, 170 (03) :1417-1436
[10]   On Admissibility Criteria for Weak Solutions of the Euler Equations [J].
De Lellis, Camillo ;
Szekelyhidi, Laszlo, Jr. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 195 (01) :225-260