PaccMann: a web service for interpretable anticancer compound sensitivity prediction

被引:40
作者
Cadow, Joris [1 ]
Born, Jannis [1 ,2 ]
Manica, Matteo [1 ]
Oskooei, Ali [1 ]
Martinez, Maria Rodriguez [1 ]
机构
[1] IBM Res Europe, Computat Syst Biol Grp, Saumerstr 4, CH-8803 Ruschlikon, Switzerland
[2] Swiss Fed Inst Technol, Machine Learning & Computat Biol Lab, D BSSE, Mattenstr 26, CH-4058 Basel, Switzerland
关键词
MTOR INHIBITORS; CANCER;
D O I
10.1093/nar/gkaa327
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The identification of new targeted and personalized therapies for cancer requires the fast and accurate assessment of the drug efficacy of potential compounds against a particular biomolecular sample. It has been suggested that the integration of complementary sources of information might strengthen the accuracy of a drug efficacy prediction model. Here, we present a web-based platform for the Prediction of AntiCancer Compound sensitivity with Multimodal Attention-based Neural Networks (PaccMann). PaccMann is trained on public transcriptomic cell line profiles, compound structure information and drug sensitivity screenings, and outperforms state-of-the-art methods on anticancer drug sensitivity prediction. On the open-access web service (https://ibm.biz/paccmann-aas), users can select a known drug compound or design their own compound structure in an interactive editor, perform in-silico drug testing and investigate compound efficacy on publicly available or user-provided transcriptomic profiles. PaccMann leverages methods for model interpretability and outputs confidence scores as well as attention heatmaps that highlight the genes and chemical sub-structures that were more important to make a prediction, hence facilitating the understanding of the model's decision making and the involved biochemical processes. We hope to serve the community with a toolbox for fast and efficient validation in drug repositioning or lead compound identification regimes.
引用
收藏
页码:W502 / W508
页数:7
相关论文
共 44 条
[1]   Drug ReposER: a web server for predicting similar amino acid arrangements to known drug binding interfaces for potential drug repositioning [J].
Ab Ghani, Nur Syatila ;
Ramlan, Effirul Ikhwan ;
Firdaus-Raih, Mohd .
NUCLEIC ACIDS RESEARCH, 2019, 47 (W1) :W350-W356
[2]  
Ayhan M. S., 2018, Medical imaging with deep learning, P1
[3]   The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [J].
Barretina, Jordi ;
Caponigro, Giordano ;
Stransky, Nicolas ;
Venkatesan, Kavitha ;
Margolin, Adam A. ;
Kim, Sungjoon ;
Wilson, Christopher J. ;
Lehar, Joseph ;
Kryukov, Gregory V. ;
Sonkin, Dmitriy ;
Reddy, Anupama ;
Liu, Manway ;
Murray, Lauren ;
Berger, Michael F. ;
Monahan, John E. ;
Morais, Paula ;
Meltzer, Jodi ;
Korejwa, Adam ;
Jane-Valbuena, Judit ;
Mapa, Felipa A. ;
Thibault, Joseph ;
Bric-Furlong, Eva ;
Raman, Pichai ;
Shipway, Aaron ;
Engels, Ingo H. ;
Cheng, Jill ;
Yu, Guoying K. ;
Yu, Jianjun ;
Aspesi, Peter, Jr. ;
de Silva, Melanie ;
Jagtap, Kalpana ;
Jones, Michael D. ;
Wang, Li ;
Hatton, Charles ;
Palescandolo, Emanuele ;
Gupta, Supriya ;
Mahan, Scott ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Liefeld, Ted ;
MacConaill, Laura ;
Winckler, Wendy ;
Reich, Michael ;
Li, Nanxin ;
Mesirov, Jill P. ;
Gabriel, Stacey B. ;
Getz, Gad ;
Ardlie, Kristin ;
Chan, Vivien ;
Myer, Vic E. .
NATURE, 2012, 483 (7391) :603-607
[4]  
Bjerrum E.J., 2017, SMILES Enumeration as Data Augmen
[5]  
Bohm Hans-Joachim, 2004, Drug Discov Today Technol, V1, P217, DOI 10.1016/j.ddtec.2004.10.009
[6]  
Bokeh Development Team, 2019, Bokeh: Python library for interactive visualization
[7]   PaccMannRL: Designing Anticancer Drugs From Transcriptomic Data via Reinforcement Learning [J].
Born, Jannis ;
Manica, Matteo ;
Oskooei, Ali ;
Cadow, Joris ;
Martinez, Maria Rodriguez .
RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY, RECOMB 2020, 2020, 12074 :231-233
[8]   Molecular fingerprint similarity search in virtual screening [J].
Cereto-Massague, Adria ;
Jose Ojeda, Maria ;
Valls, Cristina ;
Mulero, Miguel ;
Garcia-Vallve, Santiago ;
Pujadas, Gerard .
METHODS, 2015, 71 :58-63
[9]   Therapeutic Effect of Repurposed Temsirolimus in Lung Adenocarcinoma Model [J].
Chang, Hsuen-Wen ;
Wu, Min-Ju ;
Lin, Zih-Miao ;
Wang, Chueh-Yi ;
Cheng, Shu-Yun ;
Lin, Yen-Kuang ;
Chow, Yen-Hung ;
Ch'ang, Hui-Ju ;
Chang, Vincent H. S. .
FRONTIERS IN PHARMACOLOGY, 2018, 9
[10]   Physical and biological roles of mesoscale eddies in Japanese eel larvae dispersal in the western North Pacific Ocean [J].
Chang, Yu-Lin K. ;
Miyazawa, Yasumasa ;
Beguer-Pon, Melanie ;
Han, Yu-San ;
Ohashi, Kyoko ;
Sheng, Jinyu .
SCIENTIFIC REPORTS, 2018, 8