Linear programming bounds for codes in Grassmannian spaces

被引:33
作者
Bachoc, C [1 ]
机构
[1] Inst Math Bordeaux, Lab A2X, F-33405 Talence, France
关键词
bounds; chordal distance; codes; Grassmann manifold; linear programming method; zonal functions;
D O I
10.1109/TIT.2006.872973
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we develop the linear programming method to obtain bounds for the cardinality of Grassmannian codes endowed with the chordal distance. We obtain a bound and its asymptotic version that generalize the well-known bound for codes in the real projective space obtained by Kabatyanskiy and Levenshtein, and improve the Hamming bound for sufficiently large minimal distances.
引用
收藏
页码:2111 / 2125
页数:15
相关论文
共 25 条
  • [1] [Anonymous], 2005, J THEOR NOMBRES BORD
  • [2] Codes and designs in Grassmannian spaces
    Bachoc, C
    Bannai, E
    Coulangeon, R
    [J]. DISCRETE MATHEMATICS, 2004, 277 (1-3) : 15 - 28
  • [3] Designs in grassmannian spaces and lattices
    Bachoc, C
    Coulangeon, R
    Nebe, G
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2002, 16 (01) : 5 - 19
  • [4] Bounds on packings of spheres in the Grassmann manifold
    Barg, A
    Yu, D
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (09) : 2450 - 2454
  • [5] BARG A, BOUND GRASSMANNIAN C
  • [6] A group-theoretic framework for the construction of packings in grassmannian spaces
    Calderbank, AR
    Hardin, RH
    Rains, EM
    Shor, PW
    Sloane, NJA
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 1999, 9 (02) : 129 - 140
  • [7] Conway J. H., 1996, EXP MATH, V5, P139
  • [8] Delsarte P., 1977, Geom. Dedicata, V6, P363, DOI DOI 10.1007/BF03187604
  • [9] DELSARTE P, 1975, 30 PHIL, P91
  • [10] Dunkl CF., 2001, Orthogonal Polynomials of Several Variables. Encyclopedia of Mathematics and its Applications, DOI 10.1017/CBO9780511565717