Robust Updating of Uncertain Computational Models Using Experimental Modal Analysis
被引:33
作者:
Soize, Christian
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Est, Lab Modelisat & Simulat Multi Echelle, F-77454 Marne La Vallee, FranceUniv Paris Est, Lab Modelisat & Simulat Multi Echelle, F-77454 Marne La Vallee, France
Soize, Christian
[1
]
Capiez-Lernout, Evangeline
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Est, Lab Modelisat & Simulat Multi Echelle, F-77454 Marne La Vallee, FranceUniv Paris Est, Lab Modelisat & Simulat Multi Echelle, F-77454 Marne La Vallee, France
Capiez-Lernout, Evangeline
[1
]
Ohayon, Roger
论文数: 0引用数: 0
h-index: 0
机构:
Conservatoire Natl Arts & Metiers, Struct Mech & Coupled Syst Lab, F-75003 Paris, FranceUniv Paris Est, Lab Modelisat & Simulat Multi Echelle, F-77454 Marne La Vallee, France
Ohayon, Roger
[2
]
机构:
[1] Univ Paris Est, Lab Modelisat & Simulat Multi Echelle, F-77454 Marne La Vallee, France
[2] Conservatoire Natl Arts & Metiers, Struct Mech & Coupled Syst Lab, F-75003 Paris, France
In this paper, a methodology is presented to perform the robust updating of complex uncertain dynamic systems with respect to modal experimental data in the context of structural dynamics. Because both model uncertainties and parameter uncertainties must be considered in the computational model, the uncertain computational model is constructed by using the nonparametric probabilistic approach. We present an extension to the probabilistic case of the input-error methodology for modal analysis adapted to the deterministic updating problem. It is shown that such an extension to the robust-updating context induces some conceptual difficulties and is not straightforward. The robust-updating formulation leads us to solve a mono-objective optimization problem in the presence of inequality probabilistic constraints. A numerical application is presented to show the efficiency of the proposed method.