Vector fields satisfying the barycenter property

被引:4
作者
Lee, Manseob [1 ]
机构
[1] Mokwon Univ, Dept Math, Daejeon 302729, South Korea
基金
新加坡国家研究基金会;
关键词
Barycenter property; Singular point; Generic; Hyperbolic; Axiom A; Anosov; DIFFEOMORPHISMS; STABILITY; FLOWS; SPECIFICATION; ROBUST; AXIOM;
D O I
10.1515/math-2018-0040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that if a vector field X has the C-1 robustly barycenter property then it does not have singularities and it is Axiom A without cycles. Moreover, if a generic C-1-vector field has the barycenter property then it does not have singularities and it is Axiom A without cycles. Moreover, we apply the results to the divergence free vector fields. It is an extension of the results of the barycenter property for generic diffeomorphisms and volume preserving diffeomorphisms [1].
引用
收藏
页码:429 / 436
页数:8
相关论文
共 20 条
[1]   NONUNIFORM HYPERBOLICITY FOR C1-GENERIC DIFFEOMORPHISMS [J].
Abdenur, Flavio ;
Bonatti, Christian ;
Crovisier, Sylvain .
ISRAEL JOURNAL OF MATHEMATICS, 2011, 183 (01) :1-60
[2]  
[Anonymous], 1987, Pitman Res. Notes Math. Ser.
[3]  
Aoki N, 1992, BOL SOC BRAS MAT, V23, P21, DOI DOI 10.1007/BF02584810
[4]   The specification property for flows from the robust and generic viewpoint [J].
Arbieto, Alexander ;
Senos, Laura ;
Sodero, Tatiana .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (06) :1893-1909
[5]   A generic incompressible flow is topological mixing [J].
Bessa, Mario .
COMPTES RENDUS MATHEMATIQUE, 2008, 346 (21-22) :1169-1174
[6]   SHADOWING, EXPANSIVENESS AND SPECIFICATION FOR C1-CONSERVATIVE SYSTEMS [J].
Bessa, Mario ;
Lee, Manseob ;
Wen, Xiao .
ACTA MATHEMATICA SCIENTIA, 2015, 35 (03) :583-600
[7]   EXPANSIVE ONE-PARAMETER FLOWS [J].
BOWEN, R ;
WALTERS, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1972, 12 (01) :180-&
[8]   Stability properties of divergence-free vector fields [J].
Ferreira, Celia .
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2012, 27 (02) :223-238
[9]   Nonsingular star flows satisfy axiom a and the no-cycle condition [J].
Gan, SB ;
Wen, L .
INVENTIONES MATHEMATICAE, 2006, 164 (02) :279-315
[10]  
Guckenheimer J., 1976, Applied Mathematical Series, V9, P368