W1,p estimates for solutions to the Ginzburg-Landau equation with boundary data in H1/2

被引:10
作者
Bethuel, F
Bourgain, J
Brezis, H
Orlandi, G
机构
[1] Univ Paris 06, Anal Numer Lab, F-75252 Paris 05, France
[2] Inst Adv Study, Princeton, NJ 08540 USA
[3] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[4] Univ Verona, Dipartimento Informat, I-37134 Verona, Italy
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 2001年 / 333卷 / 12期
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0764-4442(01)02191-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider complex-valued solutions u(epsilon) of the Ginzburg-Landau on a smooth bounded simply connected domain Omega of R-N, N greater than or equal to 2 (here epsilon is a parameter between 0 and 1). We assume that u(epsilon) = g(epsilon) on partial derivativeOmega, where \g(epsilon)\ = 1 and g(epsilon) is uniformly bounded in H-1/2(partial derivativeOmega). We also assume that the Ginzburg-Landau energy E-epsilon (u(epsilon)) is bounded by M-o\log epsilon\, where M-o is some given constant. We establish, for every 1 less than or equal to p < N/ (N - 1), uniform W-1,W-p bounds for u(ε), (independent of ε). These types of estimates play a central role in the asymptotic analysis of u(ε) as ε --> 0. (C) 2001 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:1069 / 1076
页数:8
相关论文
共 13 条
[1]   Small energy solutions to the Ginzburg-Landau equation [J].
Bethuel, F ;
Brezis, H ;
Orlandi, G .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (10) :763-770
[2]  
BETHUEL F, UNPUB J FUNCT ANAL
[3]  
BETHUEL F, 1994, GINZBURGLANDAU VORTI
[4]  
BETHUEL F, 1999, CALCULUS VARIATIONS
[5]   On the structure of the Sobolev space H1/2 with values into the circle [J].
Bourgain, J ;
Brezis, H ;
Mironescu, P .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (02) :119-124
[6]   Lifting in Sobolev spaces [J].
Bourgain, J ;
Brezis, H ;
Mironescu, P .
JOURNAL D ANALYSE MATHEMATIQUE, 2000, 80 (1) :37-86
[7]  
BOURGAIN J, UNPUB
[8]  
Giaquinta M., 1998, Cartesian currents in the calculus of variations. I, V37
[9]   MAPPINGS MINIMIZING THE LP NORM OF THE GRADIENT [J].
HARDT, R ;
LIN, FH .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1987, 40 (05) :555-588
[10]  
JERRARD R, UNPUB CALC VAR PARTI