Learning Local Receptive Fields in Deep Belief Networks for Visual Feature Detection

被引:0
作者
Turcsany, Diana [1 ]
Bargiela, Andrzej [1 ]
机构
[1] Univ Nottingham, Sch Comp Sci, Nottingham, England
来源
NEURAL INFORMATION PROCESSING (ICONIP 2014), PT I | 2014年 / 8834卷
关键词
Visual information processing; neural encoding; deep belief network; receptive fields; unsupervised learning; facial feature detection;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Through the introduction of local receptive fields, we improve the fidelity of restricted Boltzmann machine (RBM) based representations to encodings extracted by visual processing neurons. Our biologically inspired Gaussian receptive field constraints encourage learning of localized features and can seamlessly integrate into RBMs. Moreover, we propose a method for concurrently finding advantageous receptive field centers, while training the RBM. The strength of our method to reconstruct characteristic details of facial features is demonstrated on a challenging face dataset.
引用
收藏
页码:462 / 470
页数:9
相关论文
共 12 条
[1]  
[Anonymous], 2010, P ADV NEUR INF PROC
[2]  
[Anonymous], 2008, Advances in neural information processing systems
[3]  
[Anonymous], 2009, P 26 ANN INT C MACHI, DOI DOI 10.1145/1553374.1553453
[4]   Reducing the dimensionality of data with neural networks [J].
Hinton, G. E. ;
Salakhutdinov, R. R. .
SCIENCE, 2006, 313 (5786) :504-507
[5]   Training products of experts by minimizing contrastive divergence [J].
Hinton, GE .
NEURAL COMPUTATION, 2002, 14 (08) :1771-1800
[6]   A fast learning algorithm for deep belief nets [J].
Hinton, Geoffrey E. ;
Osindero, Simon ;
Teh, Yee-Whye .
NEURAL COMPUTATION, 2006, 18 (07) :1527-1554
[7]  
Huang G. B., 2012, NIPS, P764
[8]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[9]  
Le Q.V., 2012, P 29 INT COFERENCE I
[10]  
Nair V., 2010, P 27 INT C MACH LEAR, P807