On a Generalization of Hilbert's Inequality and Its Reinforcement

被引:0
|
作者
Xi, Gaowen [1 ]
机构
[1] Chongqing Univ Sci & Technol, Coll Math & Phys, Chongqing 401331, Peoples R China
来源
INDUSTRIAL INSTRUMENTATION AND CONTROL SYSTEMS, PTS 1-4 | 2013年 / 241-244卷
关键词
Hilbert's inequality; weight coefficient; Cauchy's inequality; generalization; reinforcement;
D O I
10.4028/www.scientific.net/AMM.241-244.2858
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
By deducing an inequality of the weight coefficient omega(n)(A, B) = Sigma(infinity)(m=1)1/Am + Bn(Bn/Am)(1/2) < pi/A - 35/24 root AB(root n+15/14 root n(-1)), where n is an element of N, A, B>0,and 21 min{A, B}(2)>19 max.{A, B}(2), the purposeof this paper is to establish on a generalization of Hilbert's inequality and its reinforcement.
引用
收藏
页码:2858 / 2861
页数:4
相关论文
共 50 条