On a Generalization of Hilbert's Inequality and Its Reinforcement

被引:0
作者
Xi, Gaowen [1 ]
机构
[1] Chongqing Univ Sci & Technol, Coll Math & Phys, Chongqing 401331, Peoples R China
来源
INDUSTRIAL INSTRUMENTATION AND CONTROL SYSTEMS, PTS 1-4 | 2013年 / 241-244卷
关键词
Hilbert's inequality; weight coefficient; Cauchy's inequality; generalization; reinforcement;
D O I
10.4028/www.scientific.net/AMM.241-244.2858
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
By deducing an inequality of the weight coefficient omega(n)(A, B) = Sigma(infinity)(m=1)1/Am + Bn(Bn/Am)(1/2) < pi/A - 35/24 root AB(root n+15/14 root n(-1)), where n is an element of N, A, B>0,and 21 min{A, B}(2)>19 max.{A, B}(2), the purposeof this paper is to establish on a generalization of Hilbert's inequality and its reinforcement.
引用
收藏
页码:2858 / 2861
页数:4
相关论文
共 8 条
[1]  
Gao MZ, 1996, J MATH ANAL APPL, V204, P346
[2]  
Hardy G. H., 1952, Inequalities
[3]  
Hsu C.L., 1991, J MATH RES EXP, V11, P143
[4]  
Lv Z.X, 2005, MATH PRACTICE THEORY, V35, P141
[5]  
Yang B.C., 1998, INT J MATH MATH SCI, V21, P403
[6]  
Yang B.C, 2002, J XINYANG TEACHERS C, V15, P387
[7]  
Yang B.C., 1996, J MATH STUDY, V29, P64
[8]  
Yang Bicheng, 1997, ADV MATH, V26, P159