Formation mechanism of gradient structure of aluminum matrix composite under static magnetic field during directional solidification

被引:18
作者
Hu, Shaodong [1 ,3 ]
Hou, Long [2 ]
Wang, Kang [1 ]
Liao, Zhongmiao [1 ]
Fautrelle, Yves [4 ]
Li, Wenfang [1 ]
Li, Xi [2 ]
机构
[1] Dongguan Univ Technol, Sch Mat Sci & Engn, Dongguan 523808, Guangdong, Peoples R China
[2] Shanghai Univ, State Key Lab Adv Special Steel, Shanghai 200072, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Mat Sci & Engn, Xian 710049, Peoples R China
[4] PHELMA, SIMAP EPM Madylam G INP CNRS, F-38402 St Martin Dheres, France
来源
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T | 2020年 / 9卷 / 03期
关键词
Gradient structure; Magnetic field; Gravity; Temperature field; PHASE; CONVECTION; ALLOYS; MICROSTRUCTURE; MICROGRAVITY;
D O I
10.1016/j.jmrt.2020.02.072
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Aluminum matrix composite, as a new electronic packaging material, has attracted the attention of researchers. Effect of magnetic field on gradient structure of aluminum matrix composites (Al -21 wt.%Si and Al-40 wt.%Cu) has been investigated during directional solidification. Experimental results show that the application of static magnetic field results in the formation of gradient structure during directional solidification. Numerical simulation results and a proposed theoretical model indicate that gravity, temperature field and ther- moelectric (TE) magnetic convection are beneficial to the precipitation and growth of the primary phases. Finally, the primary phases precipitate and grow rapidly near the initial solidification interface, leading to the gradient structure. This work facilitates the under- standing of forced flow greatly changing the solidification structure of aluminum matrix composite under magnetic field during directional solidification. (C) 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:4459 / 4468
页数:10
相关论文
共 26 条
[1]   THERMOELECTRIC EFFECTS ON ELECTRICALLY CONDUCTING PARTICLES IN LIQUID METAL [J].
Baltaretu, F. ;
Wang, J. ;
Letout, S. ;
Ren, Z. M. ;
Li, X. ;
Budenkova, O. ;
Fautrelle, Y. .
MAGNETOHYDRODYNAMICS, 2015, 51 (01) :45-55
[2]   Visualization of freckle formation induced by forced melt convection in solidifying GaIn alloys [J].
Boden, S. ;
Eckert, S. ;
Gerbeth, G. .
MATERIALS LETTERS, 2010, 64 (12) :1340-1343
[3]   Gravity-induced sedimentation during melting and liquid phase sintering of Pb-Sn alloys [J].
Du, Y ;
Courtney, TH ;
Lu, SZ .
ACTA MATERIALIA, 2003, 51 (02) :445-456
[4]   Thermo-Electric-Magnetic Hydrodynamics in Solidification: In Situ Observations and Theory [J].
Fautrelle, Y. ;
Wang, J. ;
Salloum-Abou-Jaoude, G. ;
Abou-Khalil, L. ;
Reinhart, G. ;
Li, X. ;
Ren, Z. M. ;
Nguyen-Thi, H. .
JOM, 2018, 70 (05) :764-771
[5]   Al-SiC powder preparation for electronic packaging aluminum composites by plasma spray processing [J].
Gui, M ;
Kang, SB ;
Euh, K .
JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2004, 13 (02) :214-222
[6]  
Guo QW, 2010, PHASE ATLAS BINARY A
[7]   Numerical study on directional solidification of AlSi alloys with rotating magnetic fields under microgravity conditions [J].
Hainke, M ;
Friedrich, J ;
Müller, G .
JOURNAL OF MATERIALS SCIENCE, 2004, 39 (06) :2011-2015
[8]   Microstructure and properties of electronic packaging box with high silicon aluminum-base alloy by semi-solid thixoforming [J].
Jia, Qi-jin ;
Liu, Jun-you ;
Li, Yan-xia ;
Wang, Wen-shao .
TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2013, 23 (01) :80-85
[9]   Separation mechanism of the primary Si phase from the hypereutectic Al-Si alloy using a rotating magnetic field during solidification [J].
Jie, J. C. ;
Zou, Q. C. ;
Sun, J. L. ;
Lu, Y. P. ;
Wang, T. M. ;
Li, T. J. .
ACTA MATERIALIA, 2014, 72 :57-66
[10]   Gradient structure induced by molybdenum in 90W-Ni-Fe heavy alloy [J].
Jin, Ying ;
Cao, Shunhua ;
Zhu, Jie ;
Liu, Huiyuan ;
Chen, Binghuang ;
Xu, Huan .
INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2014, 43 :141-146