Firefly Algorithm Based on Level-Based Attracting and Variable Step Size

被引:19
作者
Zhao, Jia [1 ,2 ,3 ]
Chen, Wenping [1 ]
Ye, Jun [1 ]
Wang, Hui [1 ,2 ,3 ]
Sun, Hui [1 ,2 ,3 ]
Lee, Ivan [4 ]
机构
[1] Nanchang Inst Technol, Sch Informat Engn, Nanchang 330099, Jiangxi, Peoples R China
[2] Jiangxi Prov Key Lab Water Informat Cooperat Sens, Nanchang 330099, Jiangxi, Peoples R China
[3] Natl Local Engn Lab Water Engn Safety & Effect Ut, Nanchang 330099, Jiangxi, Peoples R China
[4] Univ South Australia, Sch Informat Technol & Math Sci, Adelaide, SA 5000, Australia
基金
中国国家自然科学基金;
关键词
Firefly algorithm; full attraction model; level-based attracting model; variable step size; PARTICLE SWARM OPTIMIZATION; BEE COLONY ALGORITHM; DIFFERENTIAL EVOLUTION ALGORITHM; PERFORMANCE; PARAMETERS;
D O I
10.1109/ACCESS.2020.2981656
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To address the challenge of local optimization and step size factor parameter setting in the full attraction model of the firefly algorithm (FA), this paper introduces level-based attraction and variable step size to FA. In the level-based attraction model, fireflies are firstly grouped in different levels according to the brightness, and each firefly randomly selects two fireflies from a higher level to learn from. By using the variable step size strategy, the searching step size decreases with the number of iterations. Herein, the level-based attracting model can increase the diversity of individual learning and improve the ability to jump out of local optimization. Meanwhile, dynamic adjustment of step size can balance the detection and development ability of the algorithm and improve the optimization accuracy of the algorithm. To evaluate the effectiveness of the proposed algorithm, comparisons are drawn against optimized FA, particle swarm optimization algorithm, artificial bee colony algorithm and differential evolution algorithm on a variety of test function sets.
引用
收藏
页码:58700 / 58716
页数:17
相关论文
共 53 条
[1]  
Al-Wagih K., 2014, INT J COMPUT APPL TE, V4, P77
[2]  
Amaya Iván, 2014, Dyna rev.fac.nac.minas, V81, P85, DOI 10.15446/dyna.v81n186.46761
[3]   Solving systems of nonlinear equations using a modified firefly algorithm (MODFA) [J].
Ariyaratne, M. K. A. ;
Fernando, T. G. I. ;
Weerakoon, S. .
SWARM AND EVOLUTIONARY COMPUTATION, 2019, 48 :72-92
[4]  
Arunachalam S., 2014, P INT C SWARM EV MEM, P647
[5]   A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems [J].
Aydilek, Ibrahim Berkan .
APPLIED SOFT COMPUTING, 2018, 66 :232-249
[6]   Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems [J].
Brest, Janez ;
Greiner, Saso ;
Boskovic, Borko ;
Mernik, Marjan ;
Zumer, Vijern .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (06) :646-657
[7]  
Chen Q., 2014, 178 ZHENGZHOU U
[8]   Locust Swarms - A New Multi-Optima Search Technique [J].
Chen, Stephen .
2009 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-5, 2009, :1745-1752
[9]  
Coelho LD, 2011, IEEE C EVOL COMPUTAT, P517
[10]   Firefly algorithm approach based on chaotic Tinkerbell map applied to multivariable PID controller tuning [J].
Coelho, Leandro dos Santos ;
Mariani, Viviana Cocco .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (08) :2371-2382