Quasi-isometric rigidity of the class of convex-cocompact Kleinian groups

被引:1
作者
Haissinsky, Peter [1 ,2 ]
机构
[1] Univ Paul Sabatier, Inst Math Toulouse, 118 Route Narbonne, F-31062 Toulouse 9, France
[2] Univ Aix Marseille, Inst Math Marseille, CMI, 39 Rue Freder Joliot Curie, F-13453 Marseille 13, France
来源
IN THE TRADITION OF AHLFORS-BERS, VII | 2017年 / 696卷
关键词
Hyperbolic groups; cube complexes; hyperbolic; 3-manifolds; convex-cocompact Kleinian groups; !text type='JS']JS[!/text]J-decomposition; CONVERGENCE GROUPS; HYPERBOLIC GROUPS; ACCESSIBILITY; MANIFOLDS;
D O I
10.1090/conm/696/14022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a streamlined proof that the class of convex-cocompact Kleinian groups are quasi-isometrically rigid, relying on the quasi-isometric invariance of strong accessibility for word hyperbolic groups.
引用
收藏
页码:183 / 203
页数:21
相关论文
共 45 条
[1]   RESIDUAL LIMIT SETS OF KLEINIAN GROUPS [J].
ABIKOFF, W .
ACTA MATHEMATICA, 1973, 130 (1-2) :127-144
[2]   GEOMETRIC DECOMPOSITIONS OF KLEINIAN GROUPS [J].
ABIKOFF, W ;
MASKIT, B .
AMERICAN JOURNAL OF MATHEMATICS, 1977, 99 (04) :687-697
[3]  
Agol I, 2013, DOC MATH, V18, P1045
[4]  
Anderson J. W., 1996, COMPLEX VARIABLES, V31, P177
[5]   Closed essential surfaces in hyperbolizable acylindrical 3-manifolds [J].
Anderson, JW .
PACIFIC JOURNAL OF MATHEMATICS, 1998, 183 (01) :1-19
[6]  
[Anonymous], 1984, The Smith conjecture
[7]  
[Anonymous], 1883, Acta mathematica
[8]  
Bergeron N, 2012, AM J MATH, V134, P843
[9]  
Bonk M, 2009, AM J MATH, V131, P409
[10]   A topological characterisation of hyperbolic groups [J].
Bowditch, BH .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 11 (03) :643-667