Similarity-based methods for potential human microRNA-disease association prediction

被引:91
作者
Chen, Hailin [1 ,2 ]
Zhang, Zuping [1 ]
机构
[1] Cent S Univ, Sch Informat Sci & Engn, Changsha 410083, Hunan, Peoples R China
[2] Hunan Univ Humanities Sci & Technol, Dept Comp Sci & Technol, Loudi 417000, Peoples R China
来源
BMC MEDICAL GENOMICS | 2013年 / 6卷
基金
国家高技术研究发展计划(863计划); 高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
MicroRNA-disease association prediction; Network similarity; Network consistency; GENOME-WIDE ASSOCIATION; HUMAN PHENOME; CANCER; NETWORK; DATABASE; RNA; MIRNAS; GENES;
D O I
10.1186/1755-8794-6-12
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background: The identification of microRNA-disease associations is critical for understanding the molecular mechanisms of diseases. However, experimental determination of associations between microRNAs and diseases remains challenging. Meanwhile, target diseases need to be revealed for some new microRNAs without any known target disease association information as new microRNAs are discovered each year. Therefore, computational methods for microRNA-disease association prediction have gained a lot of research interest. Methods: Herein, based on the assumption that functionally related microRNAs tend to be associated with phenotypically similar diseases, three inference methods were presented for microRNA-disease association prediction, namely MBSI (microRNA-based similarity inference), PBSI (phenotype-based similarity inference) and NetCBI (network-consistency-based inference). Global network similarity measure was used in the three methods to predict new microRNA-disease associations. Results: We tested the three methods on 242 known microRNA-disease associations by leave-one-out cross-validation for prediction evaluation, and achieved AUC values of 74.83%, 54.02% and 80.66%, respectively. The best-performed method NetCBI was then chosen for novel microRNA-disease association prediction. Some associations strongly predicted by NetCBI were confirmed by the publicly accessible databases, which indicated the usefulness of this method. The newly predicted associations were publicly released to facilitate future studies. Moreover, NetCBI was especially applicable to predicting target diseases for microRNAs whose target association information was not available. Conclusions: The encouraging results suggest that our method NetCBI can not only provide help in identifying novel microRNA-disease associations but also guide biological experiments for scientific research.
引用
收藏
页数:9
相关论文
共 30 条
[1]   Prediction of human disease genes by human-mouse conserved coexpression analysis [J].
Ala, Ugo ;
Piro, Rosario Michael ;
Grassi, Elena ;
Damasco, Christian ;
Silengo, Lorenzo ;
Oti, Martin ;
Provero, Paolo ;
Di Cunto, Ferdinando .
PLOS COMPUTATIONAL BIOLOGY, 2008, 4 (03)
[2]   The functions of animal microRNAs [J].
Ambros, V .
NATURE, 2004, 431 (7006) :350-355
[3]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[4]   Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls [J].
Burton, Paul R. ;
Clayton, David G. ;
Cardon, Lon R. ;
Craddock, Nick ;
Deloukas, Panos ;
Duncanson, Audrey ;
Kwiatkowski, Dominic P. ;
McCarthy, Mark I. ;
Ouwehand, Willem H. ;
Samani, Nilesh J. ;
Todd, John A. ;
Donnelly, Peter ;
Barrett, Jeffrey C. ;
Davison, Dan ;
Easton, Doug ;
Evans, David ;
Leung, Hin-Tak ;
Marchini, Jonathan L. ;
Morris, Andrew P. ;
Spencer, Chris C. A. ;
Tobin, Martin D. ;
Attwood, Antony P. ;
Boorman, James P. ;
Cant, Barbara ;
Everson, Ursula ;
Hussey, Judith M. ;
Jolley, Jennifer D. ;
Knight, Alexandra S. ;
Koch, Kerstin ;
Meech, Elizabeth ;
Nutland, Sarah ;
Prowse, Christopher V. ;
Stevens, Helen E. ;
Taylor, Niall C. ;
Walters, Graham R. ;
Walker, Neil M. ;
Watkins, Nicholas A. ;
Winzer, Thilo ;
Jones, Richard W. ;
McArdle, Wendy L. ;
Ring, Susan M. ;
Strachan, David P. ;
Pembrey, Marcus ;
Breen, Gerome ;
St Clair, David ;
Caesar, Sian ;
Gordon-Smith, Katherine ;
Jones, Lisa ;
Fraser, Christine ;
Green, Elain K. .
NATURE, 2007, 447 (7145) :661-678
[5]   Truncation in CCND1 mRNA alters miR-16-1 regulation in mantle cell lymphoma [J].
Chen, Robert W. ;
Bemis, Lynne T. ;
Amato, Carol M. ;
Myint, Han ;
Tran, Hung ;
Birks, Diane K. ;
Eckhardt, S. Gail ;
Robinson, William A. .
BLOOD, 2008, 112 (03) :822-829
[6]   RWRMDA: predicting novel human microRNA-disease associations [J].
Chen, Xing ;
Liu, Ming-Xi ;
Yan, Gui-Ying .
MOLECULAR BIOSYSTEMS, 2012, 8 (10) :2792-2798
[7]   Dysregulated microRNAs in the pathogenesis and progression of cervical neoplasm [J].
Cheung, Tak-hong ;
Man, Kwun-nok Mimi ;
Yu, Mei-yung ;
Yim, So-fan ;
Siu, Nelson S. S. ;
Lo, Keith W. K. ;
Doran, Graeme ;
Wong, Raymond R. Y. ;
Wang, Vivian W. ;
Smith, David I. ;
Worley, Michael J., Jr. ;
Berkowitz, Ross S. ;
Chung, Tony K. H. ;
Wong, Yick-fu .
CELL CYCLE, 2012, 11 (15) :2876-2884
[8]   Principles of microRNA regulation of a human cellular signaling network [J].
Cui, Qinghua ;
Yu, Zhenbao ;
Purisima, Enrico O. ;
Wang, Edwin .
MOLECULAR SYSTEMS BIOLOGY, 2006, 2 (1)
[9]   Oncomirs - microRNAs with a role in cancer [J].
Esquela-Kerscher, A ;
Slack, FJ .
NATURE REVIEWS CANCER, 2006, 6 (04) :259-269
[10]   The let-7 microRNA reduces tumor growth in mouse models of lung cancer [J].
Esquela-Kerscher, Aurora ;
Trang, Phong ;
Wiggins, Jason F. ;
Patrawala, Lubna ;
Cheng, Angie ;
Ford, Lance ;
Weidhaas, Joanne B. ;
Brown, David ;
Bader, Andreas G. ;
Slack, Frank J. .
CELL CYCLE, 2008, 7 (06) :759-764