EEG Source Localization: A New Multiway Temporal-Spatial-Spectral Analysis

被引:0
作者
Le Thanh Xuyen [1 ]
Le Trung Thanh [2 ]
Nguyen Linh Trung [2 ]
Tran Thi Thuy Quynh [2 ]
Nguyen Duc Thuan [1 ]
机构
[1] Hanoi Univ Sci & Technol, Sch Elect & Telecommun, Hanoi, Vietnam
[2] Vietnam Natl Univ, VNU Univ Engn & Technol, AVITECH, Hanoi, Vietnam
来源
PROCEEDINGS OF 2019 6TH NATIONAL FOUNDATION FOR SCIENCE AND TECHNOLOGY DEVELOPMENT (NAFOSTED) CONFERENCE ON INFORMATION AND COMPUTER SCIENCE (NICS) | 2019年
关键词
Electroencephalography (EEG); source localization; epileptic spikes; multiway blind source separation; tensor decomposition; graph signal processing; DECOMPOSITIONS; SIGNALS;
D O I
10.1109/nics48868.2019.9023865
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Accurate localization of epileptogenic zone is highly meaningful for epilepsy diagnosis and treatment in general and removal of the epileptogenic region in epilepsy surgery in particular. In this paper, we present a robust method for electroencephalography (EEG) source localization based on a new multiway temporal-spatial-spectral (TSS) analysis for epileptic spikes via graph signal processing and multiway blind source separation. Instead of using the temporal behavior of the EEG distributed sources, we first apply the graph wavelet transform to the spatial variable for epilepsy tensor construction in order to exploit latent information of the spatial domain. We then apply the tensorial multiway blind source separation method for estimating the sources and hence localizing them. Numerical experiments on both synthetic and real data are carried out to evaluate the effectiveness of the TSS analysis and to compare it with two state-of-the-art types of analysis: space-time-frequency (STF) and space-time-wave-vector (STWV). Experimental results show that the proposed method is promising for epileptic source estimation and localization.
引用
收藏
页码:228 / 233
页数:6
相关论文
共 19 条
  • [1] Multiway analysis of epilepsy tensors
    Acar, Evrim
    Aykut-Bingol, Canan
    Bingol, Haluk
    Bro, Rasmus
    Yener, Buelent
    [J]. BIOINFORMATICS, 2007, 23 (13) : I10 - I18
  • [2] EEG extended source localization: Tensor-based vs. conventional methods
    Becker, H.
    Albera, L.
    Comon, P.
    Haardt, M.
    Birot, G.
    Wendling, F.
    Gavaret, M.
    Benar, C. G.
    Merlet, I.
    [J]. NEUROIMAGE, 2014, 96 : 143 - 157
  • [3] Brain-Source Imaging
    Becker, Hanna
    Albera, Laurent
    Comon, Pierre
    Gribonval, Remi
    Wendling, Fabrice
    Merlet, Isabelle
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2015, 32 (06) : 100 - 112
  • [4] Multi-way space-time-wave-vector analysis for EEG source separation
    Becker, Hanna
    Comon, Pierre
    Albera, Laurent
    Haardt, Martin
    Merlet, Isabelle
    [J]. SIGNAL PROCESSING, 2012, 92 (04) : 1021 - 1031
  • [5] Berg A. T., 2010, ATLAS EPILEPSIES
  • [6] Tensor Decompositions for Signal Processing Applications
    Cichocki, Andrzej
    Mandic, Danilo P.
    Anh Huy Phan
    Caiafa, Cesar F.
    Zhou, Guoxu
    Zhao, Qibin
    De Lathauwer, Lieven
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2015, 32 (02) : 145 - 163
  • [7] Tensor decomposition of EEG signals: A brief review
    Cong, Fengyu
    Lin, Qiu-Hua
    Kuang, Li-Dan
    Gong, Xiao-Feng
    Astikainen, Piia
    Ristaniemi, Tapani
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2015, 248 : 59 - 69
  • [8] A physiologically plausible spatio-temporal model for EEG signals recorded with intracerebral electrodes in human partial epilepsy
    Cosandier-Rimele, Delphine
    Badier, Jean-Michel
    Chauvel, Patrick
    Wendling, Fabrice
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2007, 54 (03) : 380 - 388
  • [9] Universe's primordial quantum memories
    Dvali, Gia
    Eisemann, Lukas
    Michel, Marco
    Zell, Sebastian
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2019, (03):
  • [10] Hammond D. K., 2019, VERTEX FREQUENCY ANA