A 2-10 GHz Ultra-Wideband Common-Gate Low Noise Amplifier using Body Bias Technique in 0.18 μm CMOS

被引:0
作者
Mubashir, Syed [1 ]
Singh, Vikram [1 ]
机构
[1] Shri Mata Vaishno Devi Univ, Dept Elect & Commun Engn, Katra, J&K, India
来源
PROCEEDINGS OF 2ND INTERNATIONAL CONFERENCE ON 2017 DEVICES FOR INTEGRATED CIRCUIT (DEVIC) | 2017年
关键词
cmos; common-gate; forward body bias technique; low noise amplifier; ultra-wideband; DESIGN; LNA;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This In this paper a 2-10 GHz Common-Gate (CG) cascoded LNA with body bias technique is presented. The proposed 2-stage LNA is designed using 0.18 mu m CMOS process. The first stage is a Common Gate used in cascade with the cascoded second stage. The input impedance of the CG stage is matched with the antenna impedance i.e. 50 Omega in the frequency range of interest. The 2-stage configuration has high supply voltage requirements due to stacking of transistors. Body bias technique is used to lower the required supply voltage which leads to reduced power consumption and low noise figure at higher frequencies. The cascode amplifier in first and second stage enhances the gain and provides better reverse isolation. The proposed LNA shows the simulation results of less than -13 dB input return loss (S-11), maximum power gain (S-21) of 12.2 dB at 3 GHz and a noise figure of 3.7-6.2 dB over the full frequency band while consuming only 48 mW from a 1.8 V supply voltage. The linearity analysis shows a 1 dB compression point of -10 dBm, IIP3 and OIP3 of -4.4 dBm and 6.18 dBm respectively.
引用
收藏
页码:541 / 545
页数:5
相关论文
共 50 条
[21]   The Design of an Ultralow-Power Ultra-wideband (5 GHz-10 GHz) Low Noise Amplifier in 0.13 μm CMOS Technology [J].
Jobaneh, Hemad Heidari .
ACTIVE AND PASSIVE ELECTRONIC COMPONENTS, 2020, 2020
[22]   A 3.2 mW 2.2-13.2 GHz CMOS Differential Common-Gate LNA for Ultra-Wideband Receivers [J].
Zhang, Li ;
Nguyen, L. K. Nguyen ;
Chen, Jingjun ;
Momeni, Omeed ;
Liu, Xiaoguang .
2022 IEEE/MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS 2022), 2022, :715-718
[23]   A 0.18 μm dual-gate CMOS model for the design of 2.4 GHz low noise amplifier [J].
Liang, Kung-Hao ;
Chan, Yi-Jen .
2006 IEEE RADIO FREQUENCY INTEGRATED CIRCUITS SYMPOSIUM, 2006, :313-316
[24]   A 0.18 μm dual-gate CMOS model for the design of 2.4 GHz low noise amplifier [J].
Liang, Kung-Hao ;
Chan, Yi-Jen .
2006 IEEE RADIO FREQUENCY INTEGRATED CIRCUITS (RFIC) SYMPOSIUM, DIGEST OF PAPERS, 2006, :353-+
[25]   Design and Performance Measure of 5.4 GHZ CMOS Low Noise Amplifier using Current Reuse Technique in 0.18μm Technology [J].
Shankar, S. Udaya ;
Dhas, M. Davidson Kamala .
GRAPH ALGORITHMS, HIGH PERFORMANCE IMPLEMENTATIONS AND ITS APPLICATIONS (ICGHIA 2014), 2015, 47 :135-143
[26]   A 0.18μm CMOS low noise amplifier using a current reuse technique for 3.1-10.6 GHz UWB receivers [J].
王春华 ;
万求真 .
半导体学报, 2011, 32 (08) :74-79
[27]   An Ultra-Wideband 0.1-6.1 GHz Low Noise Amplifier in 180 nm CMOS Technology [J].
Bidabadi, Farshad Shirani ;
Mir-Moghtadaei, Sayed Vahid .
JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2021, 30 (06)
[28]   Bridged-shunt-series peaking technique for a 3.1-10.6 GHz ultra-wideband CMOS low noise amplifier [J].
Lin, Yu-Liang ;
Liao, Hsien-Yuan ;
Chiou, Hwann-Kaeo .
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2008, 50 (03) :575-578
[29]   An Inductor-Coupling Resonated CMOS Low Noise Amplifier for 3.1-10.6GHz Ultra-Wideband System [J].
Huang, Zhe-Yang ;
Huang, Che-Cheng ;
Chen, Chun-Chieh ;
Hung, Chung-Chill ;
Chen, Chia-Min .
ISCAS: 2009 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-5, 2009, :221-+
[30]   A 24-GHz Low Power Low Noise Amplifier Using Current Reuse and Body Forward Bias Techniques in 0.18-μm CMOS Technology [J].
Kuo, Che-Chung ;
Wang, Huei .
2010 ASIA-PACIFIC MICROWAVE CONFERENCE, 2010, :1509-1512