Minimal periods of semilinear evolution equations with Lipschitz nonlinearity

被引:7
作者
Robinson, JC [1 ]
Vidal-López, A
机构
[1] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
[2] Univ Complutense Madrid, Dept Matemat Aplicada, E-28040 Madrid, Spain
关键词
period orbits; minimal period; semilinear evolution equations; Navier-Stokes equations;
D O I
10.1016/j.jde.2005.04.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is known that any periodic orbit of a Lipschitz ordinary differential equation x = f(x) must have period at least 2 pi/L, where L is the Lipschitz constant of f. In this paper, we prove a similar result for the semilinear evolution equation du/dt = -Au + f(u): for each alpha with 0 <= alpha <= 1/2 there exists a constant K-alpha such that if L is the Lipschitz constant of f as a map from D(A(alpha)) into H then any periodic orbit has period at least K alpha L-1/(1-alpha). As a concrete application we recover a result of Kukavica giving a lower bound on the period for the 2d Navier-Stokes equations with periodic boundary conditions. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:396 / 406
页数:11
相关论文
共 11 条
[1]  
Brezis H., 1980, Nonlinear Analysis Theory, Methods & Applications, V4, P677, DOI 10.1016/0362-546X(80)90068-1
[2]  
CONSTANTIN P, 1988, NAVIERSTOKES EQUATIO
[3]  
Henry D., 1981, Geometric Theory of Semilinear Parabolic Partial Differential Equations, DOI [DOI 10.1007/BFB0089647, 10.1007/BFb0089647]
[4]  
Kukavica I., 1994, Journal of Dynamics and Differential Equations, V6, P175, DOI 10.1007/BF02219192
[5]  
Kukavica I, 1999, INDIANA U MATH J, V48, P1057
[6]  
Robinson J. C., 2001, CAM T APP M
[7]  
ROBINSON JC, 2004, UNPUB NONLINEARITY
[8]  
SAUER T, 1993, J STAT PHYS, V71, P529
[9]  
Talenti G., 1976, Ann. di Mat. Pura ed Appl., V110, P353, DOI DOI 10.1007/BF02418013
[10]  
TEMAM R, 1985, NAVIERSTOKES EQUATIO