Simplicial differential calculus, divided differences, and construction of Weil functors

被引:1
作者
Bertram, Wolfgang [1 ]
机构
[1] Nancy Univ, Inst Elie Cartan Nancy, CNRS, INRIA, F-54506 Vandoeuvre Les Nancy, France
关键词
Divided differences; differential calculus; jet functor; scalar extension; Weil functor; Taylor expansion;
D O I
10.1515/FORM.2011.105
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define a simplicial differential calculus by generalizing divided differences from the case of curves to the case of general maps, defined on general topological vector spaces, or even on modules over a topological ring K. This calculus has the advantage that the number of evaluation points grows linearly with the degree, and not exponentially as in the classical, "cubic" approach. In particular, it is better adapted to the case of positive characteristic, where it permits to define Weil functors corresponding to scalar extension from K to truncated polynomial rings K[X]/(Xk+1).
引用
收藏
页码:19 / 47
页数:29
相关论文
共 14 条
  • [1] Differential calculus over general base fields and rings
    Bertram, W
    Glöckner, H
    Neeb, KH
    [J]. EXPOSITIONES MATHEMATICAE, 2004, 22 (03) : 213 - 282
  • [2] Bertram W., 2008, CONT GEOMETRY TOPOLO, P73
  • [3] Bertram W., 2011, CALCUL DIFF IN PRESS
  • [4] Bertram W, 2008, MEM AM MATH SOC, V192, P1
  • [5] Combinatorial differential forms
    Breen, L
    Messing, W
    [J]. ADVANCES IN MATHEMATICS, 2001, 164 (02) : 203 - 282
  • [6] Kock A., 1981, LONDON MATH SOC LECT, V51
  • [7] Kolar I., 2013, Natural Operations in Differential Geometry
  • [8] Kolár I, 2008, HANDBOOK OF GLOBAL ANALYSIS, P625, DOI 10.1016/B978-044452833-9.50013-9
  • [9] Kriegl A., 1997, The Convenient Setting of Global Analysis, Mathematical Surveys, and Monographs
  • [10] Nel L. D., 1988, CAHIERS TOPOLOGIE GE, VXXIX-4, P257