Target-Specific Precision of CRISPR-Mediated Genome Editing

被引:158
作者
Chakrabarti, Anob M. [1 ,2 ]
Henser-Brownhill, Tristan [3 ]
Monserrat, Josep [3 ]
Poetsch, Anna R. [1 ,2 ,4 ]
Luscombe, Nicholas M. [1 ,2 ,4 ]
Scaffidi, Paola [3 ,5 ]
机构
[1] Francis Crick Inst, Bioinformat & Computat Biol Lab, 1 Midland Rd, London NW1 1AT, England
[2] UCL, UCL Genet Inst, Dept Genet Evolut & Environm, London WC1E 6BT, England
[3] Francis Crick Inst, Canc Epigenet Lab, 1 Midland Rd, London NW1 1AT, England
[4] Okinawa Inst Sci & Technol Grad Univ, Onna, Okinawa, Japan
[5] UCL, UCL Canc Inst, London WC1E 6DD, England
基金
英国惠康基金; 英国医学研究理事会;
关键词
SCREENS;
D O I
10.1016/j.molcel.2018.11.031
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The CRISPR-Cas9 system has successfully been adapted to edit the genome of various organisms. However, our ability to predict the editing outcome at specific sites is limited. Here, we examined indel profiles at over 1,000 genomic sites in human cells and uncovered general principles guiding CRISPR-mediated DNA editing. We find that precision of DNA editing (i.e., recurrence of a specific indel) varies considerably among sites, with some targets showing one highly preferred indel and others displaying numerous infrequent indels. Editing precision correlates with editing efficiency and a preference for single-nucleotide homologous insertions. Precise targets and editing outcome can be predicted based on simple rules that mainly depend on the fourth nucleotide upstream of the protospacer adjacent motif (PAM). Indel profiles are robust, but they can be influenced by chromatin features. Our findings have important implications for clinical applications of CRISPR technology and reveal general patterns of broken end joining that can provide insights into DNA repair mechanisms.
引用
收藏
页码:699 / +
页数:21
相关论文
共 29 条
[1]   Predicting the mutations generated by repair of Cas9-induced double-strand breaks [J].
Allen, Felicity ;
Crepaldi, Luca ;
Alsinet, Clara ;
Strong, Alexander J. ;
Kleshchevnikov, Vitalii ;
De Angeli, Pietro ;
Palenikova, Petra ;
Khodak, Anton ;
Kiselev, Vladimir ;
Kosicki, Michael ;
Bassett, Andrew R. ;
Harding, Heather ;
Galanty, Yaron ;
Munoz-Martinez, Francisco ;
Metzakopian, Emmanouil ;
Jackson, Stephen P. ;
Parts, Leopold .
NATURE BIOTECHNOLOGY, 2019, 37 (01) :64-+
[2]   Microhomology-based choice of Cas9 nuclease target sites [J].
Bae, Sangsu ;
Kweon, Jiyeon ;
Kim, Heon Seok ;
Kim, Jin-Soo .
NATURE METHODS, 2014, 11 (07) :705-706
[3]   Kinetics and Fidelity of the Repair of Cas9-Induced Double-Strand DNA Breaks [J].
Brinkman, Eva K. ;
Chen, Tao ;
de Haas, Marcel ;
Holland, Hanna A. ;
Akhtar, Waseem ;
van Steensel, Bas .
MOLECULAR CELL, 2018, 70 (05) :801-+
[4]   Easy quantitative assessment of genome editing by sequence trace decomposition [J].
Brinkman, Eva K. ;
Chen, Tao ;
Amendola, Mario ;
van Steensel, Bas .
NUCLEIC ACIDS RESEARCH, 2014, 42 (22)
[5]   sgRNA Scorer 2.0: A Species-Independent Model To Predict CRISPR/Cas9 Activity [J].
Chari, Raj ;
Yeo, Nan Cher ;
Chavez, Alejandro ;
Church, George M. .
ACS SYNTHETIC BIOLOGY, 2017, 6 (05) :902-904
[6]   Modernizing the Nonhomologous End-Joining Repertoire: Alternative and Classical NHEJ Share the Stage [J].
Deriano, Ludovic ;
Roth, David B. .
ANNUAL REVIEW OF GENETICS, VOL 47, 2013, 47 :433-455
[7]   Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9 [J].
Doench, John G. ;
Fusi, Nicolo ;
Sullender, Meagan ;
Hegde, Mudra ;
Vaimberg, Emma W. ;
Donovan, Katherine F. ;
Smith, Ian ;
Tothova, Zuzana ;
Wilen, Craig ;
Orchard, Robert ;
Virgin, Herbert W. ;
Listgarten, Jennifer ;
Root, David E. .
NATURE BIOTECHNOLOGY, 2016, 34 (02) :184-+
[8]   Mechanism and control of V(D)J recombination versus class switch recombination: Similarities and differences [J].
Dudley, DD ;
Chaudhuri, J ;
Bassing, CH ;
Alt, FW .
ADVANCES IN IMMUNOLOGY, VOL 86, 2005, 86 :43-112
[9]   In vivo blunt-end cloning through CRISPR/Cas9-facilitated non-homologous end-joining [J].
Geisinger, Jonathan M. ;
Turan, Soren ;
Hernandez, Sophia ;
Spector, Laura P. ;
Calos, Michele P. .
NUCLEIC ACIDS RESEARCH, 2016, 44 (08)
[10]   Generation of an arrayed CRISPR-Cas9 library targeting epigenetic regulators: from high-content screens to in vivo assays [J].
Henser-Brownhill, Tristan ;
Monserrat, Josep ;
Scaffidi, Paola .
EPIGENETICS, 2017, 12 (12) :1065-1075