Bulk COFs and COF nanosheets for electrochemical energy storage and conversion

被引:630
作者
Li, Jie [1 ]
Jing, Xuechun [1 ]
Li, Qingqing [1 ]
Li, Siwu [1 ]
Gao, Xing [1 ]
Feng, Xiao [1 ]
Wang, Bo [1 ]
机构
[1] Beijing Inst Technol, Sch Chem & Chem Engn, Beijing Key Lab Photoelect Electrophoton Convers, Key Lab Cluster Sci,Minist Educ, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
COVALENT-ORGANIC FRAMEWORKS; ON-SURFACE SYNTHESIS; OXYGEN-REDUCTION REACTION; COBALT PORPHYRIN FRAMEWORK; DYNAMIC IMINE CHEMISTRY; CARBON-DIOXIDE; 2-DIMENSIONAL POLYMER; HYDROGEN EVOLUTION; CATHODE MATERIALS; WATER OXIDATION;
D O I
10.1039/d0cs00017e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Covalent organic frameworks (COFs) as an emerging class of crystalline porous materials have received much attention due to their tunable porosity, modifiable skeletons, and atomically precise structures. Besides, COFs can provide multiple high-rate charge carrier transport (electron, hole, and ion) pathways, including conjugated skeletons, overlapped pi electron clouds among the stacked layers, and open channels with a variable chemical environment. Therefore, they have shown great potential in electrochemical energy storage (EES) and conversion (EEC). However, in bulk COFs, the defects always impede charge carrier conduction, and the difficulties in reaching deep-buried active sites by either electrons or ions lead to limited performance. To overcome these obstacles, numerous research studies have been carried out to obtain COF nanosheets (NSs). This review first describes the preparation strategies of COF NSs via bottom-up and top-down approaches. Then, the applications of bulk COFs and COF NSs in EES and EEC are summarized, such as in batteries, supercapacitors, and fuel cells. Finally, key challenges and future directions in these areas are discussed.
引用
收藏
页码:3565 / 3604
页数:40
相关论文
共 330 条
[1]   The Electrochemical Reduction of Carbon Dioxide to Formate/Formic Acid: Engineering and Economic Feasibility [J].
Agarwal, Arun S. ;
Zhai, Yumei ;
Hill, Davion ;
Sridhar, Narasi .
CHEMSUSCHEM, 2011, 4 (09) :1301-1310
[2]   Cobalt-Modified Covalent Organic Framework as a Robust Water Oxidation Electrocatalyst [J].
Aiyappa, Harshitha Barike ;
Thote, Jayshri ;
Shinde, Digambar Balaji ;
Banerjee, Rahul ;
Kurungot, Sreekumar .
CHEMISTRY OF MATERIALS, 2016, 28 (12) :4375-4379
[3]   Design Principles for Covalent Organic Frameworks in Energy Storage Applications [J].
Alahakoon, Sampath B. ;
Thompson, Christina M. ;
Occhialini, Gino ;
Smaldone, Ronald A. .
CHEMSUSCHEM, 2017, 10 (10) :2116-2129
[4]  
[Anonymous], 2020, ELECTROCHEMICAL ENER
[5]  
Aykanat M. Z. A., 2018, CHEM MATER, V31, P819
[6]   Two fully conjugated covalent organic frameworks as anode materials for lithium ion batteries [J].
Bai, Linyi ;
Gao, Qiang ;
Zhao, Yanli .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (37) :14106-14110
[7]   New Triazine-Based Covalent Organic Framework for High-Performance Capacitive Energy Storage [J].
Bhanja, Piyali ;
Bhunia, Kousik ;
Das, Sabuj K. ;
Pradhan, Debabrata ;
Kimura, Ryuto ;
Hijikata, Yuh ;
Irle, Stephan ;
Bhaumik, Asim .
CHEMSUSCHEM, 2017, 10 (05) :921-929
[8]   Electrochemical Stimuli-Driven Facile Metal-Free Hydrogen Evolution from Pyrene-Porphyrin-Based Crystalline Covalent Organic Framework [J].
Bhunia, Subhajit ;
Das, Sabuj Kanti ;
Jana, Rajkumar ;
Peter, Sebastian C. ;
Bhattacharya, Santanu ;
Addicoat, Matthew ;
Bhaumik, Asim ;
Pradhan, Anirban .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (28) :23843-23851
[9]   Two-Dimensional Polymer Formation on Surfaces: Insight into the Roles of Precursor Mobility and Reactivity [J].
Bieri, Marco ;
Nguyen, Manh-Thuong ;
Groening, Oliver ;
Cai, Jinming ;
Treier, Matthias ;
Ait-Mansour, Kamel ;
Ruffieux, Pascal ;
Pignedoli, Carlo A. ;
Passerone, Daniele ;
Kastler, Marcel ;
Muellen, Klaus ;
Fasel, Roman .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (46) :16669-16676
[10]   Molecular Catalysts for Water Oxidation [J].
Blakemore, James D. ;
Crabtree, Robert H. ;
Brudvig, Gary W. .
CHEMICAL REVIEWS, 2015, 115 (23) :12974-13005