DIAMOND-CELL FINITE VOLUME SCHEME FOR THE HESTON MODEL

被引:5
作者
Kutik, Pavol [1 ]
Mikula, Karol [1 ]
机构
[1] Slovak Univ Technol Bratislava, Dept Math, Bratislava 81368, Slovakia
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2015年 / 8卷 / 05期
关键词
Tensor diffusion; diamond-cell; finite volumes; numerical solution; DIFFUSION; OPTIONS;
D O I
10.3934/dcdss.2015.8.913
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The objective of this article is to propose a novel numerical scheme for solving the partial differential equation arising in the Heston stochastic volatility model. We discretize the governing advection-diffusion-reaction equation using the finite volume technique. The diffusion tensor is treated by means of the diamond-cell approximation. A theoretical result concerning the existence and uniqueness of the solution to the corresponding system of linear equations is proved. Numerical experiments regarding accuracy and order of convergence are shown.
引用
收藏
页码:913 / 931
页数:19
相关论文
共 17 条
[1]  
Andersen L, 2008, J COMPUT FINANC, V11, P1, DOI DOI 10.21314/JCF.2008.189
[2]  
[Anonymous], 2002, Cambridge Texts in Applied Mathematics, DOI [10.1017/CBO9780511791253, DOI 10.1017/CBO9780511791253]
[3]  
[Anonymous], ANALYSIS-UK
[4]   PRICING OF OPTIONS AND CORPORATE LIABILITIES [J].
BLACK, F ;
SCHOLES, M .
JOURNAL OF POLITICAL ECONOMY, 1973, 81 (03) :637-654
[5]   Empirical properties of asset returns: stylized facts and statistical issues [J].
Cont, Rama .
QUANTITATIVE FINANCE, 2001, 1 (02) :223-236
[6]  
Coudière Y, 1999, RAIRO-MATH MODEL NUM, V33, P493
[7]   A THEORY OF THE TERM STRUCTURE OF INTEREST-RATES [J].
COX, JC ;
INGERSOLL, JE ;
ROSS, SA .
ECONOMETRICA, 1985, 53 (02) :385-407
[8]   CONVERGENCE ANALYSIS OF FINITE VOLUME SCHEME FOR NONLINEAR TENSOR ANISOTROPIC DIFFUSION IN IMAGE PROCESSING [J].
Drblikova, Olga ;
Mikula, Karol .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 46 (01) :37-60
[9]  
Fichera G., 1956, Atti Acc. Naz. Lincei Mem. Ser, V8, P1
[10]  
Forsyth P, 1999, Appl Math Finance, V6, P87