In situ catalytic formation of graphene-like graphitic layer decoration on Na3V2-xGax(PO4)3 (0 x 0.6) for ultrafast and high energy sodium storage

被引:69
作者
Hu, Qiao [1 ]
Liao, Jia-Ying [1 ]
He, Xiao-Dong [1 ]
Wang, Shuo [1 ]
Xiao, Li-Na [1 ]
Ding, Xiang [1 ]
Chen, Chun-Hua [1 ]
机构
[1] Univ Sci & Technol China, CAS Key Lab Mat Energy Convers, Dept Mat Sci & Engn, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Hefei 230026, Anhui, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
NA3V2(PO4)(3) PARTICLES; PERFORMANCE; CATHODE; BATTERY; LITHIUM;
D O I
10.1039/c8ta11890f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A series of Na3V2-xGax(PO4)(3) (x = 0, 0.1, 0.2, 0.4 and 0.6) with in situ catalytic formation of graphene-like graphitic layer decoration are synthesized via a solid-state reaction process. It is shown for the first time that the substitution of gallium for vanadium in Na3V2-xGax(PO4)(3) (x = 0.1, 0.2, 0.4 and 0.6) enhances its energy density by about 4.4% (from 355.5 W h kg(-1) for Na3V2(PO4)(3) to 371 W h kg(-1) for Na3V1.6Ga0.4(PO4)(3)) and particularly increases significantly its power density to up to 11075 W kg(-1) at 50C for Na3V1.6Ga0.4(PO4)(3) compared to 5060 W kg(-1) for Na3V2(PO4)(3). The optimal composition Na3V1.6Ga0.4(PO4)(3) is able to deliver a reversible capacity of 96.3 mA h g(-1) at 30C and 80.6 mA h g(-1) at 50C. After 1000 cycles at 5C, the reversible capacity of the Na3V1.6Ga0.4(PO4)(3) electrode can still reach 101.1 mA h g(-1) with a capacity retention of 97.3% (a very slow capacity decay of 0.0027% per cycle). These excellent electrochemical performances can be attributed largely to the highly graphitic carbon coating. Combining the analyses of transmission electron microscopy and Raman spectroscopy, it can be concluded that the Ga-doping in this series of electrode materials increases the proportion of sp(2)-type carbon. The development of these Na3V2-xGax(PO4)(3) powders provides a promising cathode material for high power sodium-ion batteries.
引用
收藏
页码:4660 / 4667
页数:8
相关论文
共 27 条
[12]   Nanoconfined Carbon-Coated Na3V2(PO4)3 Particles in Mesoporous Carbon Enabling Ultralong Cycle Life for Sodium-Ion Batteries [J].
Jiang, Yu ;
Yang, Zhenzhong ;
Li, Weihan ;
Zeng, Linchao ;
Pan, Fusen ;
Wang, Min ;
Wei, Xiang ;
Hu, Guantai ;
Gu, Lin ;
Yu, Yan .
ADVANCED ENERGY MATERIALS, 2015, 5 (10)
[13]   Improving the energy density of Na3V2(PO4)3-based positive electrodes through V/Al substitution [J].
Lalere, F. ;
Seznec, V. ;
Courty, M. ;
David, R. ;
Chotard, J. N. ;
Masquelier, C. .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (31) :16198-16205
[14]   High-Rate, Durable Sodium-Ion Battery Cathode Enabled by Carbon-Coated Micro-Sized Na3V2(PO4)3 Particles with Interconnected Vertical Nanowalls [J].
Li, Hui ;
Bi, Xuanxuan ;
Bai, Ying ;
Yuan, Yifei ;
Shahbazian-Yassar, Reza ;
Wu, Chuan ;
Wu, Feng ;
Lu, Jun ;
Amine, Khalil .
ADVANCED MATERIALS INTERFACES, 2016, 3 (09)
[15]   Effect of Carbon Matrix Dimensions on the Electrochemical Properties of Na3V2(PO4)3 Nanograins for High-Performance Symmetric Sodium-Ion Batteries [J].
Li, Shuo ;
Dong, Yifan ;
Xu, Lin ;
Xu, Xu ;
He, Liang ;
Mai, Liqiang .
ADVANCED MATERIALS, 2014, 26 (21) :3545-3553
[16]   Exploring Highly Reversible 1.5-Electron Reactions (V3+/V4+/V5+) in Na3VCr(PO4)3 Cathode for Sodium-Ion Batteries [J].
Liu, Rui ;
Xu, Guiliang ;
Li, Qi ;
Zheng, Shiyao ;
Zheng, Guorui ;
Gong, Zhengliang ;
Li, Yixiao ;
Kruskop, Elizaveta ;
Fu, Riqiang ;
Chen, Zonghai ;
Amine, Khalil ;
Yang, Yong .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (50) :43632-43639
[17]   Scalable synthesis of Na3V2(PO4)3/C porous hollow spheres as a cathode for Na-ion batteries [J].
Mao, Jianfeng ;
Luo, Chao ;
Gao, Tao ;
Fan, Xiulin ;
Wang, Chunsheng .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (19) :10378-10385
[18]   Dehydrogenation of ethane over gallium oxide in the presence of carbon dioxide [J].
Nakagawa, K ;
Okamura, M ;
Ikenaga, N ;
Suzuki, T ;
Kobayashi, T .
CHEMICAL COMMUNICATIONS, 1998, (09) :1025-1026
[19]   Electrochemical performance of Li3V2(PO4)3/C cathode materials using stearic acid as a carbon source [J].
Qiao, Y. Q. ;
Wang, X. L. ;
Xiang, J. Y. ;
Zhang, D. ;
Liu, W. L. ;
Tu, J. P. .
ELECTROCHIMICA ACTA, 2011, 56 (05) :2269-2275
[20]   Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 nanofiber network for high-rate sodium ion full batteries [J].
Ren, Wenhao ;
Zheng, Zhiping ;
Xu, Chang ;
Niu, Chaojiang ;
Wei, Qiulong ;
An, Qinyou ;
Zhao, Kangning ;
Yan, Mengyu ;
Qin, Mingsheng ;
Mai, Liqiang .
NANO ENERGY, 2016, 25 :145-153