Limit values of the recurrence quotient of Sturmian sequences

被引:36
作者
Cassaigne, J [1 ]
机构
[1] Inst Math Luminy, F-13288 Marseille 9, France
关键词
Sturmian sequence; recurrence function; recurrence quotient; continued fraction; singular factor;
D O I
10.1016/S0304-3975(98)00247-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The recurrence quotient is a real number associated to any symbolic sequence. In the case of Sturmian sequences, Morse and Hedlund proved that the smallest possible value is (5 + root 5)/2. We study here the structure of the set of values taken by the recurrence quotient for a Sturmian sequence. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:3 / 12
页数:10
相关论文
共 12 条
[1]  
ALLOUCHE JP, 1983, CR ACAD SCI I-MATH, V296, P159
[2]  
ALLOUCHE JP, COMMUNICATION
[3]   GEOMETRIC REPRESENTATION OF SEQUENCES OF COMPLEXITY 2N+1 [J].
ARNOUX, P ;
RAUZY, G .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1991, 119 (02) :199-215
[4]  
Berstel J., 1996, Developments in Language Theory II. At the Crossroads of Mathematics, Computer Science and Biology, P13
[5]  
COVEN EM, 1973, MATH SYST THEORY, V7, P138
[6]  
CUSICK T, 1989, CBMS MONOGRAPH, V30
[7]  
DAVISON JL, 1989, NATO ADV SCI I C-MAT, V265, P365
[8]   Transcendence of Thue-Morse continued fractions [J].
Queffélec, M .
JOURNAL OF NUMBER THEORY, 1998, 73 (02) :201-211
[9]  
RAUZY G, 1982, SEM THEOR NOMBRES BO
[10]  
TEHEKHOVAYA N, 1997, THESIS U AIX MARSE 2