Microstructured polymer-based substrates with broadband absorption for surface-enhanced Raman scattering

被引:7
作者
Yang, Ming [1 ,2 ]
Wu, Qiang [1 ,2 ]
Qi, Jiwei [1 ,2 ]
Drevensek-Olenik, Irena [3 ]
Chen, Zhandong [1 ,2 ]
Pan, Yusong [1 ,2 ]
Xu, Jingjun [1 ,2 ]
机构
[1] Nankai Univ, TEDA Appl Phys Sch, MOE Key Lab Weak Light Nonlinear Photon, Tianjin 300457, Peoples R China
[2] Nankai Univ, Sch Phys, Tianjin 300457, Peoples R China
[3] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
基金
中国国家自然科学基金;
关键词
surface-enhanced Raman scattering; femtosecond laser machining; Raman spectroscopy; polydimethylsiloxane; FEMTOSECOND-LASER-PULSES; SPECTROSCOPY; LITHOGRAPHY; ARRAYS; SERS; NANOPARTICLES; FABRICATION; MOLECULES; SILICON;
D O I
10.1002/jrs.4403
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
Large area (3x3cm(2)) substrates for surface-enhanced Raman scattering were fabricated by combining femtosecond laser microstructuring and soft lithography techniques. The fabrication procedure is as follows: (i) femtosecond laser machining is used to create a silicon master copy, (ii) replicates from polydimethylsiloxane are made, and (iii) a 50-nm-thick gold film is deposited on the surface of the replicates. The resulting substrates exhibit strongly enhanced absorption in the spectral region of 350 approximate to 1000nm and generate enhanced Raman signal with enhancement factor of the order of 10(7) for 10(-6)M rhodamine 6G. The main advantages of our substrates are low cost, large active area, and possibility for mass replication. Copyright (c) 2013 John Wiley & Sons, Ltd.
引用
收藏
页码:1678 / 1681
页数:4
相关论文
共 50 条
[41]   A Unified View of Surface-Enhanced Raman Scattering [J].
Lombardi, John R. ;
Birke, Ronald L. .
ACCOUNTS OF CHEMICAL RESEARCH, 2009, 42 (06) :734-742
[42]   Dynamic Preconcentration of Gold Nanoparticles for Surface-Enhanced Raman Scattering in a Microfluidic System [J].
Kim, Kwang Bok ;
Han, Ji-Hyung ;
Choi, Hyoungseon ;
Kim, Hee Chan ;
Chung, Taek Dong .
SMALL, 2012, 8 (03) :378-383
[43]   Strategy to improve stability of surface-enhanced raman scattering-active Ag substrates [J].
Yang, Kuang-Hsuan ;
Liu, Yu-Chuan ;
Hsu, Ting-Chu ;
Juang, Ming-Yu .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (35) :7530-7535
[44]   Dynamic Rastering Surface-Enhanced Raman Scattering (SERS) Measurements on Silver Nanorod Substrates [J].
Abell, Justin L. ;
Garren, Jeonifer M. ;
Zhao, Yiping .
APPLIED SPECTROSCOPY, 2011, 65 (07) :734-740
[45]   Phospholipid detection by surface-enhanced Raman scattering using silvered porous silicon substrates [J].
Arzumanyan, Grigory ;
Doroshkevich, Nelya ;
Mamatkulov, Kahramon ;
Shashkov, Sergej ;
Girel, Kseniya ;
Bandarenka, Hanna ;
Borisenko, Victor .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2017, 214 (08)
[46]   Theory of Surface-Enhanced Raman Scattering in Semiconductors [J].
Lombardi, John R. ;
Birke, Ronald L. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (20) :11120-11130
[47]   Hexagonal arrays of plasmonic gold nanopyramids on flexible substrates for surface-enhanced Raman scattering [J].
Simo, P. Christian ;
Laible, Florian ;
Horneber, Anke ;
Burkhardt, Claus J. ;
Fleischer, Monika .
NANOTECHNOLOGY, 2022, 33 (09)
[48]   Ag nanodot array as a platform for surface-enhanced Raman scattering [J].
Jung, Mi ;
Kim, Seung Kyu ;
Lee, Seok ;
Kim, Jae Hun ;
Woo, Deok Ha .
JOURNAL OF NANOPHOTONICS, 2013, 7
[49]   Vertical silver nanorod growth as a surface-enhanced Raman scattering [J].
Myoung, NoSoung ;
Park, Jung Su ;
Shin, Yong-Suk ;
Lee, Chang-Lyoul ;
Yim, Sang-Youp .
SYNTHESIS AND PHOTONICS OF NANOSCALE MATERIALS XII, 2015, 9352
[50]   Surface-enhanced Raman Scattering Effect of Silver Dendritic Nanostructures [J].
Chen Shao-Yun ;
Wang Yuan ;
Liu Hui ;
Hu Cheng-Long ;
Liu Xue-Qing ;
Liu Ji-Yan .
CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2017, 45 (03) :374-380