Microstructured polymer-based substrates with broadband absorption for surface-enhanced Raman scattering

被引:7
作者
Yang, Ming [1 ,2 ]
Wu, Qiang [1 ,2 ]
Qi, Jiwei [1 ,2 ]
Drevensek-Olenik, Irena [3 ]
Chen, Zhandong [1 ,2 ]
Pan, Yusong [1 ,2 ]
Xu, Jingjun [1 ,2 ]
机构
[1] Nankai Univ, TEDA Appl Phys Sch, MOE Key Lab Weak Light Nonlinear Photon, Tianjin 300457, Peoples R China
[2] Nankai Univ, Sch Phys, Tianjin 300457, Peoples R China
[3] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
基金
中国国家自然科学基金;
关键词
surface-enhanced Raman scattering; femtosecond laser machining; Raman spectroscopy; polydimethylsiloxane; FEMTOSECOND-LASER-PULSES; SPECTROSCOPY; LITHOGRAPHY; ARRAYS; SERS; NANOPARTICLES; FABRICATION; MOLECULES; SILICON;
D O I
10.1002/jrs.4403
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
Large area (3x3cm(2)) substrates for surface-enhanced Raman scattering were fabricated by combining femtosecond laser microstructuring and soft lithography techniques. The fabrication procedure is as follows: (i) femtosecond laser machining is used to create a silicon master copy, (ii) replicates from polydimethylsiloxane are made, and (iii) a 50-nm-thick gold film is deposited on the surface of the replicates. The resulting substrates exhibit strongly enhanced absorption in the spectral region of 350 approximate to 1000nm and generate enhanced Raman signal with enhancement factor of the order of 10(7) for 10(-6)M rhodamine 6G. The main advantages of our substrates are low cost, large active area, and possibility for mass replication. Copyright (c) 2013 John Wiley & Sons, Ltd.
引用
收藏
页码:1678 / 1681
页数:4
相关论文
共 50 条
[21]   Microfluidics for disease diagnostics based on surface-enhanced raman scattering detection [J].
Yu, Xiangdong ;
Park, Sohyun ;
Lee, Sungwoon ;
Joo, Sang-Woo ;
Choo, Jaebum .
NANO CONVERGENCE, 2024, 11 (01)
[22]   Romantic Story or Raman Scattering? Rose Petals as Ecofriendly, Low-Cost Substrates for Ultrasensitive Surface-Enhanced Raman Scattering [J].
Chou, Sin-Yi ;
Yu, Chen-Chieh ;
Yen, Yu-Ting ;
Lin, Keng-Te ;
Chen, Hsuen-Li ;
Su, Wei-Fang .
ANALYTICAL CHEMISTRY, 2015, 87 (12) :6017-6024
[23]   Proposed Substrates for Reproducible Surface-Enhanced Raman Scattering Detection [J].
Hu, Wenfang ;
Zou, Shengli .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (11) :4523-4532
[24]   Laser fabricated ripple substrates for surface-enhanced Raman scattering [J].
Buividas, Ricardas ;
Stoddart, Paul R. ;
Juodkazis, Saulius .
ANNALEN DER PHYSIK, 2012, 524 (11) :L5-L10
[25]   Green Synthesis of Ag Thin Films on Glass Substrates and Their Application in Surface-Enhanced Raman Scattering [J].
Cho, Young Kwan ;
Kim, In Hyun ;
Shin, Kuan Soo .
BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2013, 34 (10) :2942-2946
[26]   Facile Fabrication of Silver Nanoclusters as Promising Surface-Enhanced Raman Scattering Substrates [J].
Shrestha, Lok Kumar ;
Wi, Jung-Sub ;
Williams, Jesse ;
Akada, Misaho ;
Ariga, Katsuhiko .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2014, 14 (03) :2245-2251
[27]   Surface-enhanced Raman scattering on silver dendrite with different growth directions [J].
Xu, Hongyan ;
Shao, Mingwang ;
Chen, Tao ;
Zhao, Yi ;
Lee, Shuit-Tong .
JOURNAL OF RAMAN SPECTROSCOPY, 2012, 43 (03) :396-404
[28]   An array of surface-enhanced Raman scattering substrates based on plasmonic lenses [J].
Kahraman, Mehmet ;
Cakmakyapan, Semih ;
Ozbay, Ekmel ;
Culha, Mustafa .
ANNALEN DER PHYSIK, 2012, 524 (11) :663-669
[29]   Multifunctional Zn-Al layered double hydroxides for surface-enhanced Raman scattering and surface-enhanced infrared absorption [J].
Zhang, Yiyue ;
Zhang, Liangjing ;
Hu, Liang ;
Huang, Shaolong ;
Jin, Zhengyuan ;
Zhang, Min ;
Huang, Xiaoyong ;
Lu, Jianguo ;
Ruan, Shuangchen ;
Zeng, Yu-Jia .
DALTON TRANSACTIONS, 2019, 48 (02) :426-434
[30]   Formation Regularities of Plasmonic Silver Nanostructures on Porous Silicon for Effective Surface-Enhanced Raman Scattering [J].
Bandarenka, Hanna V. ;
Girel, Kseniya V. ;
Bondarenko, Vitaly P. ;
Khodasevich, Inna A. ;
Panarin, Andrei Yu. ;
Terekhov, Sergei N. .
NANOSCALE RESEARCH LETTERS, 2016, 11