Maximal regularity for second order non-autonomous Cauchy problems

被引:32
作者
Batty, Charles J. K. [1 ]
Chill, Ralph [2 ]
Srivastava, Sachi [3 ]
机构
[1] Univ Oxford St Johns Coll, Oxford OX1 3JP, England
[2] Univ Paul Verlaine Metz, CNRS, Lab Math & Applicat Metz, UMR 7122, F-57045 Metz 1, France
[3] Indian Inst Sci, Dept Math, Bangalore 560012, Karnataka, India
关键词
maximal regularity; non-autonomous; second order Cauchy problem;
D O I
10.4064/sm189-3-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider some non-autonomous second order Cauchy problems of the form u + B(t)(u) over dot + A(t)u = f (t is an element of [0, T]), u(0) = (u) over dot(0) = 0. We assume that the first order problem (u) over dot + B(t)u = f (t is an element of [0, T]), u(0) = 0, has L-p-maximal regularity. Then we establish L-p-maximal regularity of the second order problem in situations when the domains of B(t(1)) and A(t(2)) always coincide, or when A(t) = kappa B(t).
引用
收藏
页码:205 / 223
页数:19
相关论文
共 25 条
[1]  
Amann H, 2004, ADV NONLINEAR STUD, V4, P417
[2]  
[Anonymous], 1987, Rend. Sem. Mat. Univ. Padova
[3]  
[Anonymous], 1988, ANAL MATH CALCUL NUM
[4]   LP-maximal regularity for non-autonomous evolution equations [J].
Arendt, Wolfgang ;
Chill, Ralph ;
Fornaro, Simona ;
Poupaud, Cesar .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 237 (01) :1-26
[5]  
Atsushi Y., 1990, Funkcial. Ekvac, V33, P139
[6]   THE DAMPED WAVE-EQUATION IN A MOVING DOMAIN [J].
CANNARSA, P ;
DAPRATO, G ;
ZOLESIO, JP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 85 (01) :1-16
[7]   Lp-maximal regularity for second order Cauchy problems [J].
Chill, R ;
Srivastava, S .
MATHEMATISCHE ZEITSCHRIFT, 2005, 251 (04) :751-781
[8]  
Chill R., 2008, B UNIONE MAT ITAL, p[1, 147]
[9]  
Daners D, 2000, MATH NACHR, V217, P13, DOI 10.1002/1522-2616(200009)217:1<13::AID-MANA13>3.0.CO
[10]  
2-6