Lipschitz and path isometric embeddings of metric spaces

被引:17
作者
Le Donne, Enrico
机构
关键词
Path isometry; Embedding; Sub-Riemannian manifold; Nash embedding theorem; Lipschitz embedding;
D O I
10.1007/s10711-012-9785-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that each sub-Riemannian manifold can be embedded in some Euclidean space preserving the length of all the curves in the manifold. The result is an extension of Nash C-1 Embedding Theorem. For more general metric spaces the same result is false, e. g., for Finsler non-Riemannian manifolds. However, we also show that any metric space of finite Hausdorff dimension can be embedded in some Euclidean space via a Lipschitz map.
引用
收藏
页码:47 / 66
页数:20
相关论文
共 19 条