Lipschitz and path isometric embeddings of metric spaces

被引:18
作者
Le Donne, Enrico
机构
关键词
Path isometry; Embedding; Sub-Riemannian manifold; Nash embedding theorem; Lipschitz embedding;
D O I
10.1007/s10711-012-9785-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that each sub-Riemannian manifold can be embedded in some Euclidean space preserving the length of all the curves in the manifold. The result is an extension of Nash C-1 Embedding Theorem. For more general metric spaces the same result is false, e. g., for Finsler non-Riemannian manifolds. However, we also show that any metric space of finite Hausdorff dimension can be embedded in some Euclidean space via a Lipschitz map.
引用
收藏
页码:47 / 66
页数:20
相关论文
共 19 条
[1]  
[Anonymous], 2002, AM MATH SOC, DOI DOI 10.1090/SURV/091
[2]  
[Anonymous], 1999, Metric structures for Riemannian and nonRiemannian spaces
[3]  
[Anonymous], 1996, Progress in Mathematics
[4]  
[Anonymous], 2010, LECT NOTES SUBRIEMAN
[5]  
Buliga M., 2002, PREPRINT
[6]  
Burago D., 2001, A Course in Metric Geometry, DOI [10.1090/gsm/033, DOI 10.1090/GSM/033]
[7]   NASH C-1-EMBEDDING THEOREM FOR CARNOT-CARATHEODORY METRICS [J].
DAMBRA, G .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1995, 5 (02) :105-119
[8]  
Federer H., 1959, Transactions of the American Mathematical Society, V93, P418, DOI [DOI 10.1090/S0002-9947-1959-0110078-1, 10.1090/S0002-9947-1959-0110078-1]
[9]  
Gromov M., 1986, ERGEBNISSE MATH IHRE, V9, DOI [10.1007/978-3-662-02267-2, DOI 10.1007/978-3-662-02267-2]
[10]  
Kuiper N.H., 1955, Nederl. Akad. Wetensch. Proc. Ser. A, P683