Efficient parameter estimation in a macroscopic traffic flow model by discrete mollification

被引:6
作者
Acosta, Carlos D. [1 ]
Buerger, Raimund [2 ,3 ]
Mejia, Carlos E. [4 ]
机构
[1] Univ Nacl Colombia, Fac Ciencias Exactas & Nat, Dept Matemat & Estadist, Manizales, Colombia
[2] Univ Concepcion, Fac Ciencias Fis & Matemat, CI2MA, Concepcion, Chile
[3] Univ Concepcion, Fac Ciencias Fis & Matemat, Dept Ingn Matemat, Concepcion, Chile
[4] Univ Nacl Colombia Sede Medellin, Escuela Matemat, Fac Ciencias, Medellin, Colombia
关键词
traffic flow; inverse problem; degenerate parabolic equation; parameter estimation; discrete mollification; CONVECTION-DIFFUSION EQUATIONS; WHITHAM-RICHARDS MODEL; DIFFERENCE-SCHEMES; ENTROPY SOLUTIONS; NUMERICAL IDENTIFICATION; APPROXIMATIONS; ALGORITHM; WAVES;
D O I
10.1080/23249935.2015.1063022
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
Our concern is the numerical identification of traffic flow parameters in a macroscopic one-dimensional model whose governing equation is strongly degenerate parabolic. The unknown parameters determine the flux and the diffusion terms. The parameters are estimated by repeatedly solving the corresponding direct problem under variation of the parameter values, starting from an initial guess, with the aim of minimizing the distance between a time-dependent observation and the corresponding numerical solution. The direct problem is solved by a modification of a well-known monotone finite difference scheme obtained by discretizing the nonlinear diffusive term by a formula that involves a discrete mollification operator. The mollified scheme occupies a larger stencil but converges under a less restrictive Courant-Friedrichs-Lewy (CFL) condition, which allows one to employ a larger time step. The ability of the proposed procedure for the identification of traffic flow parameters is illustrated by a numerical experiment.
引用
收藏
页码:702 / 715
页数:14
相关论文
共 52 条
[1]   Stabilization of explicit methods for convection diffusion equations by discrete mollification [J].
Acosta, Carlos D. ;
Mejia, Carlos E. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (03) :368-380
[2]  
ACOSTA CARLOS D., 2014, Dyna rev.fac.nac.minas, V81, P22, DOI 10.15446/dyna.v81n183.36005
[3]   Difference schemes stabilized by discrete mollification for degenerate parabolic equations in two space dimensions [J].
Acosta, Carlos D. ;
Buerger, Raimund .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2012, 32 (04) :1509-1540
[4]   Monotone Difference Schemes Stabilized by Discrete Mollification for Strongly Degenerate Parabolic Equations [J].
Acosta, Carlos D. ;
Buerger, Raimund ;
Mejia, Carlos E. .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2012, 28 (01) :38-62
[5]  
[Anonymous], 1993, The Mollification Method and the Numerical Solution of Ill-Posed Problems
[6]   WHAT DOES THE ENTROPY CONDITION MEAN IN TRAFFIC FLOW THEORY [J].
ANSORGE, R .
TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 1990, 24 (02) :133-143
[7]   On the role of source terms in continuum traffic flow models [J].
Bagnerini, Patrizia ;
Colombo, Rinaldo M. ;
Corli, Andrea .
MATHEMATICAL AND COMPUTER MODELLING, 2006, 44 (9-10) :917-930
[8]   An n-populations model for traffic flow [J].
Benzoni-Gavage, S ;
Colombo, RM .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2003, 14 :587-612
[9]   Coupling traffic models on networks and urban dispersion models for simulating sustainable mobility strategies [J].
Berrone, Stefano ;
De Santi, Francesca ;
Pieraccini, Sandra ;
Marro, Massimo .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (06) :1975-1991
[10]   A Numerical Descent Method for an Inverse Problem of a Scalar Conservation Law Modelling Sedimentation [J].
Buerger, R. ;
Coronel, A. ;
Sepulveda, M. .
NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 2008, :225-+