Targeting Hedgehog (Hh) Pathway for the Acute Myeloid Leukemia Treatment

被引:47
|
作者
Terao, Toshiki [1 ,2 ]
Minami, Yosuke [1 ]
机构
[1] Natl Canc Ctr Hosp East, Dept Hematol, Kashiwa, Chiba 2778577, Japan
[2] Kameda Med Ctr, Dept Internal Med, Div Hematol Oncol, Kamogawa 2968602, Japan
关键词
Hedgehog pathway; acute myeloid leukemia; AML; leukemic stem cell; glioma; Smoothened; glasdegib; sonidegib; STEM-CELLS; MYELODYSPLASTIC SYNDROME; GLASDEGIB PF-04449913; CLINICAL-IMPLICATIONS; PHASE IB; GLI; INHIBITOR; MUTATIONS; ACTIVATION; THERAPY;
D O I
10.3390/cells8040312
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The Hedgehog (Hh) pathway, containing the Patched (PTCH) and Smoothened (SMO) multitransmembrane proteins, is the main regulator of vertebrate embryonic development. A non-canonical Hh pathway was recently observed in numerous types of solid cancers and hematological malignancies. Although acute myeloid leukemia (AML) is a common and lethal myeloid malignancy, the chemotherapy for AML has not changed in the last three decades. The Hh pathway and other intracellular signaling pathways are important for the tumor cells' cycle or therapeutic resistance of AML cells. In this article, we will review the current trends in Hh pathway inhibitors for treating AML.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] The BET bromodomain inhibitor ZEN-3365 targets the Hedgehog signaling pathway in acute myeloid leukemia
    Jasmin Wellbrock
    Lena Behrmann
    Jana Muschhammer
    Franziska Modemann
    Kais Khoury
    Franziska Brauneck
    Carsten Bokemeyer
    Eric Campeau
    Walter Fiedler
    Annals of Hematology, 2021, 100 : 2933 - 2941
  • [32] Targeting prohibitins induces apoptosis in acute myeloid leukemia cells
    Pomares, Helena
    Palmeri, Claudia M.
    Iglesias-Serret, Daniel
    Moncunill-Massaguer, Cristina
    Saura-Esteller, Jose
    Nunez-Vazquez, Sonia
    Gamundi, Enric
    Arnan, Montserrat
    Preciado, Sara
    Albericio, Fernando
    Lavilla, Rodolfo
    Pons, Gabriel
    Gonzalez-Barca, Eva M.
    Cosialls, Ana M.
    Gil, Joan
    ONCOTARGET, 2016, 7 (40) : 64987 - 65000
  • [33] Repositioning of bromocriptine for treatment of acute myeloid leukemia
    Carmen Lara-Castillo, Maria
    Maria Cornet-Masana, Josep
    Etxabe, Amaia
    Banus-Mulet, Antonia
    Angel Torrente, Miguel
    Nomdedeu, Meritxell
    Diaz-Beya, Marina
    Esteve, Jordi
    Risueno, Ruth M.
    JOURNAL OF TRANSLATIONAL MEDICINE, 2016, 14
  • [34] Sabatolimab TIM-3-targeting monoclonal antibody Treatment of myelodysplastic syndrome Treatment of acute myeloid leukemia
    Ussowicz, Marek
    DRUGS OF THE FUTURE, 2022, 47 (05) : 303 - 310
  • [35] Targeting Metabolic Reprogramming in Acute Myeloid Leukemia
    Castro, Isabel
    Sampaio-Marques, Belem
    Ludovico, Paula
    CELLS, 2019, 8 (09)
  • [36] Targeting Apoptosis Pathways in Acute Myeloid Leukemia
    Strati, Paolo
    DiNardo, Courtney
    Daver, Naval
    Andreeff, Michael
    Konopleva, Marina
    CLINICAL LYMPHOMA MYELOMA & LEUKEMIA, 2019, 19 : S53 - S54
  • [37] Classification of acute myeloid leukemia
    Hwang, Sang Mee
    BLOOD RESEARCH, 2020, 55 : 1 - 4
  • [38] Pathophysiology of Acute Myeloid Leukemia
    Wachter, Franziska
    Pikman, Yana
    ACTA HAEMATOLOGICA, 2024, 147 (02) : 232 - 249
  • [39] Targeting Approaches of Nanomedicines in Acute Myeloid Leukemia
    Huang, Xiao
    Lin, Hai
    Huang, Feng
    Xie, Yuning
    Wong, Ka Hong
    Chen, Xiaoyu
    Wu, Dongyue
    Lu, Aiping
    Yang, Zhijun
    DOSE-RESPONSE, 2019, 17 (04):
  • [40] Targeting TP53-Mutated Acute Myeloid Leukemia: Research and Clinical Developments
    Granowicz, Eric M.
    Jonas, Brian A.
    ONCOTARGETS AND THERAPY, 2022, 15 : 423 - 436