Universal nowhere dense and meager sets in Menger manifolds

被引:3
作者
Banakh, Taras [1 ,2 ]
Repovs, Dusan [3 ,4 ]
机构
[1] Jan Kochanowski Univ, Kielce, Poland
[2] Ivan Franko Natl Univ Lviv, Lvov, Ukraine
[3] Univ Ljubljana, Fac Educ, Ljubljana 61000, Slovenia
[4] Univ Ljubljana, Fac Math & Phys, Ljubljana 61000, Slovenia
关键词
Menger cube; Menger manifold; Universal nowhere dense set; Universal meager set; Tame open set; Tame G(delta)-set; SPACES;
D O I
10.1016/j.topol.2013.09.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In each Menger manifold M we construct: a closed nowhere dense subset M-0 which is homeomorphic to M and is universal nowhere dense in the sense that for each nowhere dense set A subset of M there is a homeomorphism h of M such that h(A) subset of M-0; a meager F-sigma-set Sigma(0) subset of M which is universal meager in the sense that for each meager subset B subset of M there is a homeomorphism h of M such that h(B) subset of Sigma(0). Also we prove that any two universal meager F-sigma-sets in M are ambiently homeomorphic. (C) 2013 Elsevier B.V All rights reserved.
引用
收藏
页码:127 / 140
页数:14
相关论文
共 15 条
[1]  
[Anonymous], 1975, Selected Topics in Infinite-Dimensional Topology, Monografie Matematyczne
[2]  
[Anonymous], 1986, Pure Appl. Math.
[3]   UV PROPERTIES OF COMPACT SETS [J].
ARMENTROUT, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 143 (SEP) :487-+
[4]  
Banakh T., 1996, Absorbing Sets in Infinite-dimensional Manifolds
[5]  
Banakh T., 2013, ALGEBR GEOM IN PRESS
[6]  
Banakh T, 2013, COMMENT MATH UNIV CA, V54, P179
[7]  
Bennett R., 1972, Fund. Math, V74, P189
[8]  
BESTVINA M, 1988, MEM AM MATH SOC, V71, P1
[9]   Nobeling spaces and pseudo-interiors of Menger compacta [J].
Chigogidze, A ;
Kawamura, K ;
Tymchatyn, ED .
TOPOLOGY AND ITS APPLICATIONS, 1996, 68 (01) :33-65
[10]  
CHIGOGIDZE A, 1994, P AM MATH SOC, V121, P631