Beyond Deterministic Models in Drug Discovery and Development

被引:18
作者
Irurzun-Arana, Itziar [1 ,2 ]
Rackauckas, Christopher [3 ]
McDonald, Thomas O. [4 ,5 ,6 ,7 ]
Troconiz, Inaki F. [1 ,2 ,8 ]
机构
[1] Univ Navarra, Sch Pharm & Nutr, Dept Pharmaceut Technol & Chem, Pharmacometr & Syst Pharmacol, Pamplona 31008, Spain
[2] Univ Navarra, Navarra Inst Hlth Res IdisNA, Pamplona 31080, Spain
[3] MIT, Dept Math, Cambridge, MA 02139 USA
[4] Dana Farber Canc Inst, Dept Data Sci, Boston, MA 02115 USA
[5] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[6] Harvard Univ, Dept Stem Cell & Regenerat Biol, Cambridge, MA 02138 USA
[7] Dana Farber Canc Inst, Ctr Canc Evolut, Boston, MA 02115 USA
[8] Univ Navarra, DATAI, Inst Data Sci & Artificial Intelligence, Pamplona 31080, Spain
关键词
STOCHASTIC DIFFERENTIAL-EQUATIONS; RESISTANCE; EVOLUTION; SYSTEMS; SIMULATION; DYNAMICS; DISEASE;
D O I
10.1016/j.tips.2020.09.005
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The model-informed drug discovery and development paradigm is now well established among the pharmaceutical industry and regulatory agencies. This success has been mainly due to the ability of pharmacometrics to bring together different modeling strategies, such as population pharmacokinetics/pharmacodynamics (PK/PD) and systems biology/pharmacology. However, there are promising quantitative approaches that are still seldom used by pharmacometricians and that deserve consideration. One such case is the stochastic modeling approach, which can be important when modeling small populations because random events can have a huge impact on these systems. In this review, we aim to raise awareness of stochastic models and how to combine themwith existingmodeling techniques, with the ultimate goal ofmaking future drug-disease models more versatile and realistic.
引用
收藏
页码:882 / 895
页数:14
相关论文
共 74 条
[1]   GillesPy: A Python Package for Stochastic Model Building and Simulation [J].
Abel, John H. ;
Drawert, Brian ;
Hellander, Andreas ;
Petzold, Linda R. .
IEEE Life Sciences Letters, 2016, 2 (03) :35-38
[2]  
Adke S.R., 1963, J. Math. Anal. Appl., V7, P209
[3]   Guiding dose selection of monoclonal antibodies using a new parameter (AFTIR) for characterizing ligand binding systems [J].
Ahmed, Sameed ;
Ellis, Miandra ;
Li, Hongshan ;
Pallucchini, Luca ;
Stein, Andrew M. .
JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2019, 46 (03) :287-304
[4]  
Allen Linda J S, 2017, Infect Dis Model, V2, P128, DOI 10.1016/j.idm.2017.03.001
[5]   The mathematics of cancer: integrating quantitative models [J].
Altrock, Philipp M. ;
Liu, Lin L. ;
Michor, Franziska .
NATURE REVIEWS CANCER, 2015, 15 (12) :730-745
[6]   Data-based analysis, modelling and forecasting of the COVID-19 outbreak [J].
Anastassopoulou, Cleo ;
Russo, Lucia ;
Tsakris, Athanasios ;
Siettos, Constantinos .
PLOS ONE, 2020, 15 (03)
[7]  
[Anonymous], 2005, Branching processes: variation, growth, and extinction of populations
[8]   A stochastic model for immunotherapy of cancer [J].
Baar, Martina ;
Coquille, Loren ;
Mayer, Hannah ;
Hoelzel, Michael ;
Rogava, Meri ;
Tueting, Thomas ;
Bovier, Anton .
SCIENTIFIC REPORTS, 2016, 6
[9]   The impact of tacrolimus exposure on extrarenal adverse effects in adult renal transplant recipients [J].
Campagne, Olivia ;
Mager, Donald E. ;
Brazeau, Daniel ;
Venuto, Rocco C. ;
Tornatore, Kathleen M. .
BRITISH JOURNAL OF CLINICAL PHARMACOLOGY, 2019, 85 (03) :516-529
[10]   ADJOINT SENSITIVITY ANALYSIS FOR DIFFERENTIAL-ALGEBRAIC EQUATIONS: THE ADJOINT DAE SYSTEM AND ITS NUMERICAL SOLUTION [J].
Cao, Yang ;
Li, Shengtai ;
Petzold, Linda ;
Serban, Radu .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 24 (03) :1076-1089