Controlled Synthesis of Surface-clean Monolayer Graphene

被引:2
作者
Wang Xueshen [1 ]
Li Jinjin [1 ]
Zhong Qing [1 ]
Zhong Yuan [1 ]
Zhao Mengke [1 ]
机构
[1] Natl Inst Metrol, Beijing 100013, Peoples R China
来源
MICRO-NANO TECHNOLOGY XIV, PTS 1-4 | 2013年 / 562-565卷
关键词
monolayer graphene; exfoliation; CVD; annealing; clean; CHEMICAL-VAPOR-DEPOSITION; FILMS; RESOLUTION;
D O I
10.4028/www.scientific.net/KEM.562-565.85
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Controlled synthesis surface-clean monolayer graphene was achieved. Monolayer Graphene was achieved by mechanical exfoliation (ME) and chemical vapor deposition (CVD), and then transferred to SiO2 (300nm)/Si substrates. There were tape residues left on the surface of the ME graphene, and poly (methyl methacrylate) (PMMA)/photoresist residues left on the surface of the CVD graphene after the transferring and lithography process. Annealing method was used to clean all these kinds of residues. Annealing processes were performed at different temperatures in both vacuum and N-2/H-2. It is conclude that N-2/H-2 is crucial for the removing of residues, and 400 degrees C is favorable for removing the residues. Atomic force microscope (AFM) images and Raman spectra were taken to confirm the effect of the annealing.
引用
收藏
页码:85 / 90
页数:6
相关论文
共 50 条
[21]   Wettability and Surface Free Energy Analyses of Monolayer Graphene [J].
Ruixia Su ;
Xing Zhang .
Journal of Thermal Science, 2018, 27 :359-363
[22]   Synthesis of high-quality monolayer graphene by low-power plasma [J].
Hong, Hyo-Ki ;
Kim, Na Yeon ;
Yoon, Aram ;
Lee, Suk Woo ;
Park, Jungmin ;
Yoo, Jung-Woo ;
Lee, Zonghoon .
CURRENT APPLIED PHYSICS, 2019, 19 (01) :44-49
[23]   Controlled Graphene Synthesis from Solid Carbon Sources [J].
Kondrashov, Ivan I. ;
Rybin, Maxim G. ;
Obraztsova, Ekaterina A. ;
Obraztsova, Elena D. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2019, 256 (09)
[24]   Graphene synthesis [J].
Whitener, Keith E., Jr. ;
Sheehan, Paul E. .
DIAMOND AND RELATED MATERIALS, 2014, 46 :25-34
[25]   Modulating flow near substrate surface to grow clean and large-area monolayer MoS2 [J].
Gokul, M. A. ;
Narayanan, Vrinda ;
Rahman, Atikur .
NANOTECHNOLOGY, 2020, 31 (41)
[26]   Surface-enhanced Raman scattering of suspended monolayer graphene [J].
Huang, Cheng-Wen ;
Lin, Bing-Jie ;
Lin, Hsing-Ying ;
Huang, Chen-Han ;
Shih, Fu-Yu ;
Wang, Wei-Hua ;
Liu, Chih-Yi ;
Chui, Hsiang-Chen .
NANOSCALE RESEARCH LETTERS, 2013, 8 :1-5
[27]   Toward Clean and Crackless Transfer of Graphene [J].
Liang, Xuelei ;
Sperling, Brent A. ;
Calizo, Irene ;
Cheng, Guangjun ;
Hacker, Christina Ann ;
Zhang, Qin ;
Obeng, Yaw ;
Yan, Kai ;
Peng, Hailin ;
Li, Qiliang ;
Zhu, Xiaoxiao ;
Yuan, Hui ;
Walker, Angela R. Hight ;
Liu, Zhongfan ;
Peng, Lian-mao ;
Richter, Curt A. .
ACS NANO, 2011, 5 (11) :9144-9153
[28]   Role of Argon in Optimization of the Cu Surface to Synthesize Uniform Monolayer Graphene by Chemical Vapor Deposition [J].
Liu, Jingbo ;
Li, Pingjian ;
Chen, Yuanfu ;
He, Jiarui ;
Zhou, Jinhao ;
Song, Xinbo ;
Qi, Fei ;
Zheng, Binjie ;
Lin, Wei ;
Zhang, Wanli .
ADVANCED MATERIAL ENGINEERING (AME 2015), 2016, :115-121
[29]   Graphene Synthesis and Transfer Improvements for Applications in the Semiconductor Industry [J].
Brems, S. ;
Verguts, K. ;
Vrancken, N. ;
Vermeulen, B. ;
Porret, C. ;
Peters, L. ;
Wu, C. H. ;
Huyghebaert, C. ;
Schouteden, K. ;
Van Haesendonck, C. ;
De Gendt, S. .
EMERGING MATERIALS FOR POST CMOS DEVICES/SENSING AND APPLICATIONS 8, 2017, 77 (02) :3-13
[30]   Synthesis of few-to-monolayer graphene on rutile titanium dioxide [J].
Bansal, Tanesh ;
Durcan, Christopher A. ;
Jain, Nikhil ;
Jacobs-Gedrim, Robin B. ;
Xu, Yang ;
Yu, Bin .
CARBON, 2013, 55 :168-175