Study of Corotating Interaction Regions in the Ascending Phase of the Solar Cycle: Multi-spacecraft Observations

被引:6
作者
Gonzalez-Esparza, J. A. [1 ]
Romero-Hernandez, E. [1 ,2 ]
Riley, P. [3 ]
机构
[1] Univ Nacl Autonoma Mexico, MEXART, Inst Geofis, Unidad Michoacan, Morelia 58089, Michoacan, Mexico
[2] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico
[3] Predict Sci Inc, San Diego, CA USA
关键词
Corotating interaction regions; Solar wind dynamics; Interplanetary physics; Stream interfaces; Inner heliosphere; SHOCK-WAVES; VOYAGER; ULYSSES; WIND; 1-AU; PIONEER; FIELDS;
D O I
10.1007/s11207-013-0282-z
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We combined simultaneous solar wind observations from five different spacecraft: Helios 1, Helios 2, IMP-8, Voyager 1 and Voyager 2, from November 1977 to February 1978 (Carrington rotations 1661 -aEuro parts per thousand 1664, ascending phase of Solar Cycle 21). The concurrence of the five trajectories makes this interval unique for the purpose of studying solar wind dynamics during this phase of the cycle. We analyzed the observations identifying five corotating interaction regions (CIRs) and produced maps of interplanetary large-scale features, unifying and summarizing the data. The maps show the compressive events and the magnetic sectors associated with the solar wind streams causing the CIRs. We analyzed the relative position of the stream interfaces immersed within the CIRs. About 70 % of the stream interfaces in this study were located closer to the forward edge of the CIR. From the analysis of the geometry of the stream interfaces, we found that all the CIRs presented latitudinal tilts, having their fronts pointing towards the ecliptic plane and their tails northwards or southwards. These results are in agreement with the origin of the fast streams coming from mid-latitude coronal holes and the predominance of forward shocks over reverse shocks bounding the CIRs, which characterize this phase of the cycle. From the analysis of the ratio of dynamic pressures between fast and slow solar wind streams associated with the CIRs, we found that in about 60 % of the cases the fast stream was transferring momentum to the slow one ahead, but in the rest of the cases the momentum was flowing sunward. This result indicates significant inhomogeneities in the solar wind streams during the ascending phase of the cycle that affect the local form and evolution of CIR events. We did a limited comparison between a global magneto-hydrodynamic (MHD) model of SW flows and the orientation of the SI from in-situ observations, we found, in general, a qualitative agreement between the pressure profiles at 1 AU predicted by the model and the inclinations of the stream interfaces deduced from the data analysis.
引用
收藏
页码:201 / 216
页数:16
相关论文
共 20 条
[1]   INTERPLANETARY SHOCK-WAVES - ULYSSES OBSERVATIONS IN AND OUT OF THE ECLIPTIC-PLANE [J].
BALOGH, A ;
GONZALEZESPARZA, JA ;
FORSYTH, RJ ;
BURTON, ME ;
GOLDSTEIN, BE ;
SMITH, EJ ;
BAME, SJ .
SPACE SCIENCE REVIEWS, 1995, 72 (1-2) :171-180
[2]   AN ANALYSIS OF SHOCK-WAVE DISTURBANCES OBSERVED AT 1-AU FROM 1971 THROUGH 1978 [J].
BORRINI, G ;
GOSLING, JT ;
BAME, SJ ;
FELDMAN, WC .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1982, 87 (NA6) :4365-4373
[3]   INTER-PLANETARY PARTICLES AND FIELDS, NOVEMBER 22 TO DECEMBER 6, 1977 - HELIOS, VOYAGER, AND IMP OBSERVATIONS BETWEEN 0.6 AND 1.6 AU [J].
BURLAGA, L ;
LEPPING, R ;
WEBER, R ;
ARMSTRONG, T ;
GOODRICH, C ;
SULLIVAN, J ;
GURNETT, D ;
KELLOGG, P ;
KEPPLER, E ;
MARIANI, F ;
NEUBAUER, F ;
ROSENBAUER, H ;
SCHWENN, R .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1980, 85 (NA5) :2227-2242
[4]   LARGE-SCALE INTERPLANETARY MAGNETIC-FIELDS - VOYAGER 1 AND 2 OBSERVATIONS BETWEEN 1-AU AND 9.5-AU [J].
BURLAGA, LF ;
KLEIN, LW ;
LEPPING, RP ;
BEHANNON, KW .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1984, 89 (NA12) :659-668
[5]   INTERPLANETARY STREAM INTERFACES [J].
BURLAGA, LF .
JOURNAL OF GEOPHYSICAL RESEARCH, 1974, 79 (25) :3717-3725
[6]  
Gazis P.R., 1983, NASA Conference Publication, volume 228 of NASA Conference Publication, V228, P509
[7]  
González-Esparza A, 1999, AIP CONF PROC, V471, P593, DOI 10.1063/1.58702
[8]   Solar cycle dependence of the solar wind dynamics: Pioneer Voyager, and Ulysses from 1 to 5 AU [J].
GonzalezEsparza, J ;
Smith, EJ .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1996, 101 (A11) :24359-24371
[9]   Three-dimensional nature of interaction regions: Pioneer, Voyager, and Ulysses solar cycle variations from 1 to 5 AU [J].
GonzalezEsparza, JA ;
Smith, EJ .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1997, 102 (A5) :9781-9792
[10]   LATITUDINAL VARIATION OF SOLAR-WIND COROTATING STREAM INTERACTION REGIONS - ULYSSES [J].
GOSLING, JT ;
BAME, SJ ;
MCCOMAS, DJ ;
PHILLIPS, JL ;
PIZZO, VJ ;
GOLDSTEIN, BE ;
NEUGEBAUER, M .
GEOPHYSICAL RESEARCH LETTERS, 1993, 20 (24) :2789-2792