Do Molecular Markers Inform About Pleiotropy?

被引:40
作者
Gianola, Daniel [1 ,2 ,3 ,4 ,5 ]
de los Campos, Gustavo [6 ]
Toro, Miguel A. [7 ]
Naya, Hugo [8 ]
Schoen, Chris-Carolin [4 ,5 ]
Sorensen, Daniel [9 ]
机构
[1] Univ Wisconsin, Dept Anim Sci, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Dairy Sci, Madison, WI 53706 USA
[3] Univ Wisconsin, Dept Biostat & Med Informat, Madison, WI 53706 USA
[4] Tech Univ Munich, Ctr Life & Food Sci, Dept Plant Sci, D-85354 Freising Weihenstephan, Germany
[5] Tech Univ Munich, Inst Adv Study, D-85748 Garching, Germany
[6] Michigan State Univ, Dept Biostat, E Lansing, MI 48824 USA
[7] Univ Politecn Madrid, Escuela Tecn Super Ingenieros Agron, Madrid 20840, Spain
[8] Inst Pasteur Montevideo, Montevideo 11400, Uruguay
[9] Aarhus Univ, Dept Mol Biol & Genet, DK-8000 Aarhus C, Denmark
基金
美国国家卫生研究院;
关键词
genetic correlation; genomic correlation; genomic heritability; linkage disequilibrium; pleiotropy; MIXED-MODEL; PREDICTION; POPULATIONS; ASSOCIATION; ACCURACY;
D O I
10.1534/genetics.115.179978
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The availability of dense panels of common single-nucleotide polymorphisms and sequence variants has facilitated the study of statistical features of the genetic architecture of complex traits and diseases via whole-genome regressions (WGRs). At the onset, traits were analyzed trait by trait, but recently, WGRs have been extended for analysis of several traits jointly. The expectation is that such an approach would offer insight into mechanisms that cause trait associations, such as pleiotropy. We demonstrate that correlation parameters inferred using markers can give a distorted picture of the genetic correlation between traits. In the absence of knowledge of linkage disequilibrium relationships between quantitative or disease trait loci and markers, speculating about genetic correlation and its causes (e.g., pleiotropy) using genomic data is conjectural.
引用
收藏
页码:23 / 29
页数:7
相关论文
共 16 条
[1]  
Bulik-Sullivan B., 2015, BIORXIV
[2]   Genomic Heritability: What Is It? [J].
de los Campos, Gustavo ;
Sorensen, Daniel ;
Gianola, Daniel .
PLOS GENETICS, 2015, 11 (05)
[3]  
Falconer D.S., 1996, Quantitative Genetics
[4]   Efficient Multiple-Trait Association and Estimation of Genetic Correlation Using the Matrix-Variate Linear Mixed Model [J].
Furlotte, Nicholas A. ;
Eskin, Eleazar .
GENETICS, 2015, 200 (01) :59-U112
[5]   Multiple-Trait Genomic Selection Methods Increase Genetic Value Prediction Accuracy [J].
Jia, Yi ;
Jannink, Jean-Luc .
GENETICS, 2012, 192 (04) :1513-+
[6]  
Knott SA, 2000, GENETICS, V156, P899
[7]   A mixed-model approach for genome-wide association studies of correlated traits in structured populations [J].
Korte, Arthur ;
Vilhjalmsson, Bjarni J. ;
Segura, Vincent ;
Platt, Alexander ;
Long, Quan ;
Nordborg, Magnus .
NATURE GENETICS, 2012, 44 (09) :1066-+
[8]   Estimation of pleiotropy between complex diseases using single-nucleotide polymorphism-derived genomic relationships and restricted maximum likelihood [J].
Lee, S. H. ;
Yang, J. ;
Goddard, M. E. ;
Visscher, P. M. ;
Wray, N. R. .
BIOINFORMATICS, 2012, 28 (19) :2540-2542
[9]  
Lynch M, 1999, GENETICS, V152, P1753
[10]   Joint Analysis of Psychiatric Disorders Increases Accuracy of Risk Prediction for Schizophrenia, Bipolar Disorder, and Major Depressive Disorder [J].
Maier, Robert ;
Moser, Gerhard ;
Chen, Guo-Bo ;
Ripke, Stephan ;
Coryell, William ;
Potash, James B. ;
Scheftner, William A. ;
Shi, Jianxin ;
Weissman, Myrna M. ;
Hultman, Christina M. ;
Landen, Mikael ;
Levinson, Douglas F. ;
Kendler, Kenneth S. ;
Smoller, Jordan W. ;
Wray, Naomi R. ;
Lee, S. Hong .
AMERICAN JOURNAL OF HUMAN GENETICS, 2015, 96 (02) :283-294