An Integrated Multi-Function Heterogeneous Biochemical Circuit for High-Resolution Electrochemistry-Based Genetic Analysis

被引:47
作者
Dai, Yifan [1 ,2 ]
Xu, Wei [3 ]
Somoza, Rodrigo A. [3 ,4 ,5 ]
Welter, Jean F. [3 ,4 ,5 ]
Caplan, Arnold I. [3 ,4 ,5 ]
Liu, Chung Chiun [6 ]
机构
[1] Case Western Reserve Univ, Ctr Elect Design, Cleveland, OH 44106 USA
[2] Duke Univ, Dept Biomed Engn, Durham, NC 27708 USA
[3] Case Western Reserve Univ, Dept Biomed Engn, Cleveland, OH 44106 USA
[4] Case Western Reserve Univ, Skeletal Res Ctr, Cleveland, OH 44106 USA
[5] Case Western Reserve Univ, Ctr Multimodal Evaluat Engn Cartilage, Dept Biol, Cleveland, OH 44106 USA
[6] Case Western Reserve Univ, Dept Chem & Biomol Engn, Ctr Elect Design, Cleveland, OH 44106 USA
关键词
bioanalytical chemistry; CRISPR; electrochemistry; genetic circuits; primer exchange reaction; BACTERIAL;
D O I
10.1002/anie.202010648
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Modular construction of an autonomous and programmable multi-functional heterogeneous biochemical circuit that can identify, transform, translate, and amplify biological signals into physicochemical signals based on logic design principles can be a powerful means for the development of a variety of biotechnologies. To explore the conceptual validity, we design a CRISPR-array-mediated primer-exchange-reaction-based biochemical circuit cascade, which probes a specific biomolecular input, transform the input into a structurally accessible form for circuit wiring, translate the input information into an arbitrary sequence, and finally amplify the prescribed sequence through autonomous formation of a signaling concatemer. This upstream biochemical circuit is further wired with a downstream electrochemical interface, delivering an integrated bioanalytical platform. We program this platform to directly analyze the genome of SARS-CoV-2 in human cell lysate, demonstrating the capability and the utility of this unique integrated system.
引用
收藏
页码:20545 / 20551
页数:7
相关论文
共 41 条
[1]  
[Anonymous], 2020, ANGEW CHEM, DOI [10.1002/ange.202003563, DOI 10.1002/ANGE.202003563]
[2]   Wearable sweat sensors [J].
Bariya, Mallika ;
Nyein, Hnin Yin Yin ;
Javey, Ali .
NATURE ELECTRONICS, 2018, 1 (03) :160-171
[3]  
Brophy JAN, 2014, NAT METHODS, V11, P508, DOI [10.1038/NMETH.2926, 10.1038/nmeth.2926]
[4]   The chemistry of Cas9 and its CRISPR colleagues [J].
Chen, Janice S. ;
Doudna, Jennifer A. .
NATURE REVIEWS CHEMISTRY, 2017, 1 (10)
[5]   Programmable chemical controllers made from DNA [J].
Chen, Yuan-Jyue ;
Dalchau, Neil ;
Srinivas, Niranjan ;
Phillips, Andrew ;
Cardelli, Luca ;
Soloveichik, David ;
Seelig, Georg .
NATURE NANOTECHNOLOGY, 2013, 8 (10) :755-762
[6]   Scaling up molecular pattern recognition with DNA-based winner-take-all neural networks [J].
Cherry, Kevin M. ;
Qian, Lulu .
NATURE, 2018, 559 (7714) :370-+
[7]  
Dai Y., 2019, Angew Chem, V131, P17560, DOI DOI 10.1002/ANGE.201910772
[8]  
Dai Y., 2019, Angew. Chem, V131, P12483, DOI DOI 10.1002/ANGE.201901879
[9]  
Dai Y., 2020, ANGEW CHEM-GER EDIT, DOI [10.1002/ange.202005398, DOI 10.1002/ANGE.202005398]
[10]   CRISPR Mediated Biosensing Toward Understanding Cellular Biology and Point-of-Care Diagnosis [J].
Dai, Yifan ;
Wu, Yanfang ;
Liu, Guozhen ;
Gooding, J. Justin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (47) :20754-20766