Spectral rigidity of group actions:: Applications to the case gr⟨t, s; ts = st2⟩

被引:5
作者
Ageev, ON [1 ]
机构
[1] Moscow State Tech Univ, Dept Math, Moscow 105005, Russia
关键词
group actions; ergodic theory; conjugations to its squares;
D O I
10.1090/S0002-9939-05-08380-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We apply a technique to study the notion of spectral rigidity of group actions to a group gr < t, s; ts = st(2)>. As an application, we prove that there exist rank one weakly mixing transformations conjugate to its square, thereby giving a positive answer to a well-known question.
引用
收藏
页码:1331 / 1338
页数:8
相关论文
共 12 条
[1]   The homogeneous spectrum problem in ergodic theory [J].
Ageev, O .
INVENTIONES MATHEMATICAE, 2005, 160 (02) :417-446
[2]  
Cornfeld I P, 1980, ERGODIC THEORY
[3]  
del Junco A., 1981, PROG MATH K, V10, P81
[4]  
DELJUNCO A, 1976, CAN J MATH, V24, P836
[5]  
GLASNER E, 1998, TOPOL DYN APPL, V215, DOI UNSP MR1603201 (99D:28039)
[6]  
GOODSON G, SPECTRAL PROPERTIES
[7]   Survey of recent results in the spectral theory of ergodic dynamical systems [J].
Goodson G.R. .
Journal of Dynamical and Control Systems, 1999, 5 (2) :173-226
[8]  
Halmos P. R., 1960, LECT ERGODIC THEORY
[9]  
Kirillov AA., 1976, ELEMENTS THEORY REPR, DOI [10.1007/978-3-642-66243-0, DOI 10.1007/978-3-642-66243-0]
[10]   ENTROPY AND ISOMORPHISM THEOREMS FOR ACTIONS OF AMENABLE-GROUPS [J].
ORNSTEIN, DS ;
WEISS, B .
JOURNAL D ANALYSE MATHEMATIQUE, 1987, 48 :1-142