Sodium carboxymethylcellulose, an etherified derivative of cellulose, has been found to realize stable aqueous dispersion of single-wall carbon nanotubes (SWNTs) that is twenty times more concentrated than when a surfactant is used under the same condition. The dispersion as well as thin films prepared from it exhibits well-resolved near-infrared photoluminescence peaks originating from band-gap transitions in semiconducting SWNTs, a sign of isolated individual tubes. Mechanical stretching of the film strongly aligns the tubes, as demonstrated by considerable dichroism in their absorption spectra. Possessing high optical quality and uniformity, these densely dispersed SWNT films are expected to serve as an important platform for SWNTs' optical, electrical, and optoelectronic applications, especially because cellulose derivatives are cheap, mass-produced, safe, water-processable, and environmentally benign. (c) 2006 American Institute of Physics.