A unified ansatze for the solution of nonlinear differential equations

被引:1
作者
Khuri, S. A. [1 ]
机构
[1] Amer Univ Sharjah, Dept Math & Stat, Sharjah, U Arab Emirates
关键词
Ansatze; Lorenz equations; Evolution equations; Rikitake Equations; Solitons; Traveling wave solutions; Wave equations of KdV type (I);
D O I
10.1016/j.nonrwa.2012.04.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of the paper is to propose a generalized ansatze for constructing exact solutions to nonlinear ordinary differential equations. This unified transformation is manipulated to acquire analytical solutions that are general solutions of simpler linear or nonlinear systems of ordinary differential equations that are either integrable or possess special solutions. The method is implemented to obtain several families of traveling wave solutions for a class of nonlinear evolution equations and for higher order wave equations of KdV type (I). (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:28 / 34
页数:7
相关论文
共 10 条
[1]   Exact travelling wave solutions for the Boiti-Leon-Pempinelli equation [J].
Huang, DJ ;
Zhang, HQ .
CHAOS SOLITONS & FRACTALS, 2004, 22 (01) :243-247
[2]  
Kamke E., 1959, GEWOHNLICHE DIFFEREN
[3]   Exact solutions for a class of nonlinear evolution equations: A unified ansatze approach [J].
Khuri, S. A. .
CHAOS SOLITONS & FRACTALS, 2008, 36 (05) :1181-1188
[4]   Traveling wave solutions for nonlinear differential equations: A unified ansatze approach [J].
Khuri, S. A. .
CHAOS SOLITONS & FRACTALS, 2007, 32 (01) :252-258
[5]   Soliton and periodic solutions for higher order wave equations of KdV type (I) [J].
Khuri, SA .
CHAOS SOLITONS & FRACTALS, 2005, 26 (01) :25-32
[6]   ON TYPES OF NONLINEAR NONINTEGRABLE EQUATIONS WITH EXACT-SOLUTIONS [J].
KUDRYASHOV, NA .
PHYSICS LETTERS A, 1991, 155 (4-5) :269-275
[7]   Solutions in closed form and as power series to the real Lorenz equations [J].
Leach, PGL ;
Flessas, GP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (30) :6013-6029
[8]   On exact solutions of the nonlinear Schrodinger equations in optical fiber [J].
Li, B ;
Chen, Y .
CHAOS SOLITONS & FRACTALS, 2004, 21 (01) :241-247
[9]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[10]  
2