Non-radial sign-changing solutions for the Schrodinger-Poisson problem in the semiclassical limit

被引:20
作者
Ianni, Isabella [1 ]
Vaira, Giusi [2 ]
机构
[1] Univ Naples 2, Dipartimento Matemat & Fis, I-81100 Caserta, Italy
[2] Univ Roma La Sapienza, Dipartimento Sci Base & Applicate Ingn, Sez Matemat, I-00185 Rome, Italy
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2015年 / 22卷 / 04期
关键词
Schrodinger-Poisson problem; Semiclassical limit; Cluster solutions; Sign-changing solutions; Variational methods; Lyapunov-Schmidt reduction; KLEIN-GORDON-MAXWELL; THOMAS-FERMI; SOLITARY WAVES; ATOMS; EQUATION; HARTREE; STATES;
D O I
10.1007/s00030-014-0303-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the following system of equations known as Schrodinger-Poisson problem where is a small parameter, is given, N a parts per thousand yen 3 , a (N) is the surface measure of the unit sphere in and the unknowns are . We construct non-radial sign-changing multi-peak solutions in the semiclassical limit. The peaks are displaced in suitable symmetric configurations and collapse to the same point as -> 0. The proof is based on the Lyapunov-Schmidt reduction.
引用
收藏
页码:741 / 776
页数:36
相关论文
共 22 条
[1]  
Ambrosetti A., 2005, Perturbation methods and semilinear elliptic problems on RN
[2]   On Schrodinger-Poisson Systems [J].
Ambrosetti, Antonio .
MILAN JOURNAL OF MATHEMATICS, 2008, 76 (01) :257-274
[3]   Ground state solutions for the nonlinear Schrodinger-Maxwell equations [J].
Azzollini, A. ;
Pomponio, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) :90-108
[4]   Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations [J].
Benci, V ;
Fortunato, D .
REVIEWS IN MATHEMATICAL PHYSICS, 2002, 14 (04) :409-420
[5]  
Benci V., 1998, Top. Meth. Nonlinear Anal, V11, P283, DOI [https://doi.org/10.12775/TMNA.1998.019, DOI 10.12775/TMNA.1998.019]
[6]   THE THOMAS-FERMI-VONWEIZSACKER THEORY OF ATOMS AND MOLECULES [J].
BENGURIA, R ;
BREZIS, H ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 79 (02) :167-180
[8]   Standing waves in the Maxwell-Schrodinger equation and an optimal configuration problem [J].
D'Aprile, T ;
Wei, JC .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2006, 25 (01) :105-137
[9]   On bound states concentrating on spheres for the Maxwell-Schrodinger equation [J].
D'Aprile, T ;
Wei, JC .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 37 (01) :321-342
[10]   Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrodinger-Maxwell equations [J].
D'Aprile, T ;
Mugnai, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2004, 134 :893-906