Study of the back recombination processes of PbS quantum dots sensitized solar cells

被引:18
作者
Badawi, Ali [1 ]
Al-Hosiny, N. [1 ,2 ]
Merazga, Amar [1 ]
Albaradi, Ateyyah M. [1 ]
Abdallah, S. [3 ]
Talaat, H. [4 ]
机构
[1] Taif Univ, Fac Sci, Dept Phys, At Taif, Saudi Arabia
[2] Aljouf Univ, Fac Sci, Dept Phys, Aljouf, Saudi Arabia
[3] Benha Univ, Fac Engn Shoubra, Dept Math & Phys Engn, Cairo, Egypt
[4] Ain Shams Univ, Fac Sci, Dept Phys, Cairo, Egypt
关键词
Back recombination process; Quantum dots sensitized solar cell; Time constant; SILAR; TUNING PHOTOCURRENT RESPONSE; IONIC LAYER ADSORPTION; PHOTOVOLTAIC PERFORMANCE; SIZE CONTROL; BAND-GAP; CDS; NANOTUBE; ELECTRON; FILMS; ARRAY;
D O I
10.1016/j.spmi.2016.10.029
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In this study, the back recombination processes of PbS quantum dots sensitized solar cells (QDSSCs) has been investigated. PbS QDs were adsorbed onto titania electrodes to act the role of sensitizers using successive ionic layer adsorption and reaction (SILAR) technique. The energy band gaps of the synthesized PbS QDs/titania are ranged from 1.64 eV (corresponding to 756 nm) to 3.12 eV (397 nm) matching the whole visible solar spectrum. The hyperbolic band model (HBM) was used to calculate PbS QDs size and it ranges from 1.76 to 3.44 nm. The photovoltaic parameters (open circuit voltage V-oc, short circuit current density J(sc), fill factor FF and efficiency eta) of the assembled PbS QDs sensitized solar cells (QDSSCs) were determined under a solar illumination of 100 mW/cm(2) (AM 1.5 conditions). The open circuit voltage-decay (OCVD) rates of the assembled PbS QDSSCs were measured. The time constant (tau) for PbS QDSSCs (4 SILAR cycles) shows one order of magnitude larger than that of PbS QDSSCs (8 SILAR cycles) as a result of a decreased electron-hole back recombination. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:694 / 702
页数:9
相关论文
共 45 条
[1]  
Abdallah S., 2012, J NANOMATER, V2012, P6
[2]   The photovoltaic performance of alloyed CdTexS1-x quantum dots sensitized solar [J].
Al-Hosiny, N. ;
Abdallah, S. ;
Badawi, Ali ;
Easawi, K. ;
Talaat, H. .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2014, 26 :238-243
[3]   Tuning photocurrent response through size control of CdSe quantum dots sensitized solar cells [J].
Badawi, A. ;
Al-Hosiny, N. ;
Abdallah, S. ;
Talaat, H. .
MATERIALS SCIENCE-POLAND, 2013, 31 (01) :6-13
[4]  
BADAWI A, 2015, CHINESE PHYS B, V24
[5]  
Badawi A., 2016, J MATER SCI-MATER EL, P1
[6]   Tuning the energy band gap of ternary alloyed Cd1-xPbxS quantum dots for photovoltaic applications [J].
Badawi, Ali .
SUPERLATTICES AND MICROSTRUCTURES, 2016, 90 :124-131
[7]   The photovoltaic performance of CdS quantum dots sensitized solar cell using graphene/TiO2 working electrode [J].
Badawi, Ali ;
Al-Hosiny, N. ;
Abdallah, S. .
SUPERLATTICES AND MICROSTRUCTURES, 2015, 81 :88-96
[8]   Single wall carbon nanotube/titania nanocomposite photoanodes enhance the photovoltaic performance of cadmium selenide quantum dot-sensitized solar cells [J].
Badawi, Ali ;
Al-Hosiny, N. ;
Abdallah, S. ;
Merazga, Amar ;
Talaat, H. .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2014, 26 :162-168
[9]   Tuning photocurrent response through size control of CdTe quantum dots sensitized solar cells [J].
Badawi, Ali ;
Al-Hosiny, N. ;
Abdallah, Said ;
Negm, S. ;
Talaat, H. .
SOLAR ENERGY, 2013, 88 :137-143
[10]   Alloyed semiconductor quantum dots: Tuning the optical properties without changing the particle size [J].
Bailey, RE ;
Nie, SM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (23) :7100-7106