Error scaling in fault tolerant quantum computation

被引:1
作者
Lanzagorta, Marco [1 ]
Uhlmann, Jeffrey [2 ]
机构
[1] ITT Corp, Alexandria, VA 22303 USA
[2] Univ Missouri, Columbia, MO 65211 USA
关键词
Quantum computing; Quantum error correction; Fault tolerant quantum computation; Threshold theorem; Quantum complexity; Quantum algorithms;
D O I
10.1016/j.amc.2011.07.070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The threshold theorem states that quantum computations can scale robustly in the presence of certain types of noise processes (e.g., Markovian) as long as the probability of error for each physical component remains below a critical threshold. To satisfy this threshold a theoretical circuit requiring O(s) idealized noiseless gates can be implemented with O(s polylog s) gates to maintain an error rate that is constant with increasing s. In this paper, we argue that maintaining a fixed error rate is necessary but not sufficient to preserve complexity results obtained under an assumption of noiseless gates. Specifically, we show that nontrivial quantum algorithms exhibit nonlinear sensitivity to any circuit error and that this sensitivity affects algorithmic complexity. The joint effects of circuit error and quantum-algorithmic iteration are examined for the case of quantum search, and more complete complexity results are derived. (c) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:24 / 30
页数:7
相关论文
共 50 条
  • [41] A small quantum computer is needed to optimize fault-tolerant protocols
    Iyer, Pavithran
    Poulin, David
    QUANTUM SCIENCE AND TECHNOLOGY, 2018, 3 (03):
  • [42] Cellular automaton decoders of topological quantum memories in the fault tolerant setting
    Herold, Michael
    Kastoryano, Michael J.
    Campbell, Earl T.
    Eisert, Jens
    NEW JOURNAL OF PHYSICS, 2017, 19
  • [43] Efficient fault-tolerant logical Hadamard gates implementation in Reed-Muller quantum codes
    Quan, DongXiao
    Niu, Li
    Zhu, LiLi
    Pei, ChangXing
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (02)
  • [44] The Quantum Future of Computation
    Svore, Krysta M.
    Troyer, Matthias
    COMPUTER, 2016, 49 (09) : 21 - 30
  • [45] Quantum computation and error correction based on continuous variable cluster states*
    Hao, Shuhong
    Deng, Xiaowei
    Liu, Yang
    Su, Xiaolong
    Xie, Changde
    Peng, Kunchi
    CHINESE PHYSICS B, 2021, 30 (06)
  • [46] Quantum computation in silicon - Device modeling, transport and fault-tolerance
    Hollenberg, L. C. L.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2007, 22 (27): : 4999 - 5009
  • [47] ERASER: Towards Adaptive Leakage Suppression for Fault-Tolerant Quantum Computing
    Vittal, Suhas
    Das, Poulami
    Qureshi, Moinuddin
    56TH IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE, MICRO 2023, 2023, : 509 - 525
  • [48] Fault-Tolerant Resource Estimation of Quantum Random-Access Memories
    Di Matteo O.
    Gheorghiu V.
    Mosca M.
    IEEE Transactions on Quantum Engineering, 2020, 1
  • [49] Mathematical models of quantum computation
    Tetsuro Nishino
    New Generation Computing, 2002, 20 : 317 - 337
  • [50] Introduction to Quantum Computation Reliability
    Thornton, Mitchell A.
    2020 IEEE INTERNATIONAL TEST CONFERENCE (ITC), 2020,