Electrochemical Fragmentation of Cu2O Nanoparticles Enhancing Selective C-C Coupling from CO2 Reduction Reaction

被引:524
作者
Jung, Hyejin [1 ,2 ]
Lee, Si Young [1 ,2 ]
Lee, Chan Woo [1 ,3 ]
Cho, Min Kyung [4 ]
Won, Da Hye [1 ]
Kim, Cheonghee [5 ]
Oh, Hyung-Suk [1 ]
Min, Byoung Koun [1 ,6 ]
Hwang, Yun Jeong [1 ,2 ]
机构
[1] Korea Inst Sci & Technol, Clean Energy Res Ctr, 5 Hwarang Ro 14 Gil, Seoul 02792, South Korea
[2] Korea Univ Sci & Technol, KIST Sch, Div Energy & Environm Technol, Seoul 02792, South Korea
[3] Kookmin Univ, Dept Appl Chem, Seoul 02707, South Korea
[4] Korea Inst Sci & Technol, Adv Anal Ctr, Seoul 02792, South Korea
[5] Tech Univ Berlin, Div Chem Engn, Dept Chem, D-10623 Berlin, Germany
[6] Korea Univ, Green Sch, 145 Anam Ro, Seoul 02841, South Korea
基金
新加坡国家研究基金会;
关键词
CARBON-DIOXIDE; POLYCRYSTALLINE COPPER; SUBSURFACE OXYGEN; OXIDATION-STATE; ELECTROREDUCTION; ELECTRODES; MORPHOLOGY; STABILITY; CATALYSTS; ETHYLENE;
D O I
10.1021/jacs.8b11237
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, we demonstrate that the initial morphology of nanoparticles can be transformed into small fragmented nanoparticles, which were densely contacted to each other, during electrochemical CO2 reduction reaction (CO2RR). Cu-based nanoparticles were directly grown on a carbon support by using cysteamine immobilization agent, and the synthesized nanoparticle catalyst showed increasing activity during initial CO2RR, doubling Faradaic efficiency of C2H4 production from 27% to 57.3%. The increased C2H4 production activity was related to the morphological transformation over reaction time. Twenty nm cubic Cu2O crystalline particles gradually experienced in situ electrochemical fragmentation into 2-4 nm small particles under the negative potential, and the fragmentation was found to be initiated from the surface of the nanocrystal. Compared to Cu@CuO nanoparticle/C or bulk Cu-0 foil, the fragmented Cu-based NP/C catalyst achieved enhanced C2+, production selectivity, accounting 87% of the total CO2RR products, and suppressed H-2 production. In-situ X-ray absorption near edge structure studies showed metallic Cu state was observed under CO2RR, but the fragmented nanoparticles were more readily reoxidized at open circuit potential inside of the electrolyte, allowing labile Cu states. The unique morphology, small nanoparticles stacked upon on another, is proposed to promote C-C coupling reaction selectivity from CO2RR by suppressing HER.
引用
收藏
页码:4624 / 4633
页数:10
相关论文
共 51 条
[1]   CO2 Electroreduction to Hydrocarbons on Carbon-Supported Cu Nanoparticles [J].
Baturina, Olga A. ;
Lu, Qin ;
Padilla, Monica A. ;
Xin, Le ;
Li, Wenzhen ;
Serov, Alexey ;
Artyushkova, Kateryna ;
Atanassov, Plamen ;
Xu, Feng ;
Epshteyn, Albert ;
Brintlinger, Todd ;
Schuette, Mike ;
Collins, Greg E. .
ACS CATALYSIS, 2014, 4 (10) :3682-3695
[2]   UNDERPOTENTIAL DEPOSITION OF LEAD ON COPPER(111) - A STUDY USING A SINGLE-CRYSTAL ROTATING-RING ELECTRODE AND EX-SITU LOW-ENERGY-ELECTRON DIFFRACTION AND AUGER-ELECTRON SPECTROSCOPY [J].
BRISARD, GM ;
ZENATI, E ;
GASTEIGER, HA ;
MARKOVIC, NM ;
ROSS, PN .
LANGMUIR, 1995, 11 (06) :2221-2230
[3]   Nature and Distribution of Stable Subsurface Oxygen in Copper Electrodes During Electrochemical CO2 Reduction [J].
Cavalca, Filippo ;
Ferragut, Rafael ;
Aghion, Stefano ;
Eilert, Andre ;
Diaz-Morales, Oscar ;
Liu, Chang ;
Koh, Ai Leen ;
Hansen, Thomas W. ;
Pettersson, Lars G. M. ;
Nilsson, Anders .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (45) :25003-25009
[4]   Electrochemical Reduction of Carbon Dioxide to Ethane Using Nanostructured Cu2O-Derived Copper Catalyst and Palladium(II) Chloride [J].
Chen, Chung Shou ;
Wan, Jane Hui ;
Yeo, Boon Siang .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (48) :26875-26882
[5]   Stable and selective electrochemical reduction of carbon dioxide to ethylene on copper mesocrystals [J].
Chen, Chung Shou ;
Handoko, Albertus D. ;
Wan, Jane Hui ;
Ma, Liang ;
Ren, Dan ;
Yeo, Boon Siang .
CATALYSIS SCIENCE & TECHNOLOGY, 2015, 5 (01) :161-168
[6]   Nature of the Active Sites for CO Reduction on Copper Nanoparticles; Suggestions for Optimizing Performance [J].
Cheng, Tao ;
Xiao, Hai ;
Goddard, William A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (34) :11642-11645
[7]   Effect of Au nano-particle aggregation on the deactivation of the AuCl3/AC catalyst for acetylene hydrochlorination [J].
Dai, Bin ;
Wang, Qinqin ;
Yu, Feng ;
Zhu, Mingyuan .
SCIENTIFIC REPORTS, 2015, 5
[8]   Selective CO2 Reduction on Zinc Electrocatalyst: The Effect of Zinc Oxidation State Induced by Pretreatment Environment [J].
Dang Le Tri Nguyen ;
Jee, Michael Shincheon ;
Won, Da Hye ;
Jung, Hyejin ;
Oh, Hyung-Suk ;
Min, Byoung Koun ;
Hwang, Yun Jeong .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (12) :11377-11386
[9]   Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction [J].
De Luna, Phil ;
Quintero-Bermudez, Rafael ;
Cao-Thang Dinh ;
Ross, Michael B. ;
Bushuyev, Oleksandr S. ;
Todorovic, Petar ;
Regier, Tom ;
Kelley, Shana O. ;
Yang, Peidong ;
Sargent, Edward H. .
NATURE CATALYSIS, 2018, 1 (02) :103-110
[10]   Morphology Matters: Tuning the Product Distribution of CO2 Electroreduction on Oxide-Derived Cu Foam Catalysts [J].
Dutta, Abhijit ;
Rahaman, Motiar ;
Luedi, Nicola C. ;
Broekmann, Peter .
ACS CATALYSIS, 2016, 6 (06) :3804-3814