Quantum K-theory, I:: Foundations

被引:88
作者
Lee, YP [1 ]
机构
[1] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
基金
美国国家科学基金会;
关键词
D O I
10.1215/S0012-7094-04-12131-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work is devoted to the study of the foundations of quantum K-theory, a K-theoretic version of quantum cohomology theory. In particular, it gives a deformation of the ordinary K-ring K (X) of a smooth projective variety X, analogous to the relation between quantum cohomology and ordinary cohomology. This new quantum product also gives a new class of Frobenius manifolds.
引用
收藏
页码:389 / 424
页数:36
相关论文
共 28 条
[1]   RIEMANN-ROCH AND TOPOLOGICAL K-THEORY FOR SINGULAR-VARIETIES [J].
BAUM, P ;
FULTON, W ;
MACPHERSON, R .
ACTA MATHEMATICA, 1979, 143 (3-4) :155-192
[2]  
BAYER A, ARXIVMATHAG0103164
[3]   The intrinsic normal cone [J].
Behrend, K ;
Fantechi, B .
INVENTIONES MATHEMATICAE, 1997, 128 (01) :45-88
[4]   Gromov-Witten invariants in algebraic geometry [J].
Behrend, K .
INVENTIONES MATHEMATICAE, 1997, 127 (03) :601-617
[5]   Stacks of stable maps and Gromov-Witten invariants [J].
Behrend, K ;
Manin, Y .
DUKE MATHEMATICAL JOURNAL, 1996, 85 (01) :1-60
[6]  
FULTON W., 1998, ERGEB MATH GRENZGEB, V2
[7]  
Fulton W., 1997, Proceedings of Symposia in Pure Mathematics, V62, P45
[8]  
FULTON W, 1981, CATEGORICAL FRAMEWOR, V31
[9]  
FuLTON W., 1985, Grundlehren Math. Wissen., V277
[10]   Quantum K-theory on flag manifolds, finite-difference Toda lattices and quantum groups [J].
Givental, A ;
Lee, YP .
INVENTIONES MATHEMATICAE, 2003, 151 (01) :193-219