Process dependent graphene/MnO2 composites for supercapacitors

被引:56
作者
Kim, Myeongjin [1 ]
Hwang, Yongseon [1 ]
Kim, Jooheon [1 ]
机构
[1] Chung Ang Univ, Sch Chem Engn & Mat Sci, Seoul 156756, South Korea
关键词
Supercapacitor; Nanoneedle; Reduction; Hydrazine hydrate; Graphene/MnO2; ELECTROCHEMICAL PROPERTIES; CARBON NANOTUBES; OXIDE; MNO2;
D O I
10.1016/j.cej.2013.06.095
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Two types of graphene/MnO2 composites were synthesized by different reaction procedures. S1 was synthesized as follows: first, nanoneedle MnO2 was formed on the GO sheets using various functional groups (GO/MnO2). In the second stage. GO/MnO2 was reduced to graphene/MnO2 (S1) via the dipping method. S2 was synthesized using a different reaction order: first, graphene oxide was reduced to graphene and nanoneedle MnO2 was formed on graphene sheets. The morphology and microstructure of the as-prepared composites were characterized by X-ray diffractometery, field-emission scanning electron microscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. Characterization indicated that the nanoneedle MnO2 structures in the S1 composite were homogeneously dispersed on graphene sheets, whereas MnO2 in the S2 composite formed aggregates due to absence of functional groups. The capacitive properties of S1 and S2 electrodes were measured using cyclic voltammetry, galvanostatic charge/discharge tests, and electrochemical impedance spectroscopy in a three-electrode experimental setup with an aqueous solution of 1 M Na2SO4 as the electrolyte. The S1 electrode exhibited a specific capacitance as high as 327.5 F g(-1) at 10 mV s(-1), which was higher than that of the S2 electrode (229.9 F g-1). It is anticipated that the formation of nanoneedle MnO2 on the GO surface following the reduction procedure could be a promising fabrication method for supercapacitor electrodes. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:482 / 490
页数:9
相关论文
共 31 条
[1]   Multi layered Nanoarchitecture of Graphene Nanosheets and Polypyrrole Nanowires for High Performance Supercapacitor Electrodes [J].
Biswas, Sanjib ;
Drzal, Lawrence T. .
CHEMISTRY OF MATERIALS, 2010, 22 (20) :5667-5671
[2]   Direct Redox Deposition of Manganese Oxide on Multiscaled Carbon Nanotube/Microfiber Carbon Electrode for Electrochemical Capacitor [J].
Bordjiba, Tarik ;
Belanger, Daniel .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (05) :A378-A384
[3]   Carbon-based nanostructured materials and their composites as supercapacitor electrodes [J].
Bose, Saswata ;
Kuila, Tapas ;
Mishra, Ananta Kumar ;
Rajasekar, R. ;
Kim, Nam Hoon ;
Lee, Joong Hee .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (03) :767-784
[4]   Graphene Oxide-MnO2 Nanocomposites for Supercapacitors [J].
Chen, Sheng ;
Zhu, Junwu ;
Wu, Xiaodong ;
Han, Qiaofeng ;
Wang, Xin .
ACS NANO, 2010, 4 (05) :2822-2830
[5]   Shape-Controlled Synthesis of One-Dimensional MnO2 via a Facile Quick-Precipitation Procedure and its Electrochemical Properties [J].
Chen, Sheng ;
Zhu, Junwu ;
Han, Qiaofeng ;
Zheng, Zhijun ;
Yang, Yong ;
Wang, Xin .
CRYSTAL GROWTH & DESIGN, 2009, 9 (10) :4356-4361
[6]   Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties [J].
Devaraj, S. ;
Munichandraiah, N. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (11) :4406-4417
[7]   MnO2-embedded-in-mesoporous-carbon-wall structure for use as electrochemical capacitors [J].
Dong, XP ;
Shen, WH ;
Gu, JL ;
Xiong, LM ;
Zhu, YF ;
Li, Z ;
Shi, JL .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (12) :6015-6019
[8]   A Three-Dimensional Carbon Nanotube/Graphene Sandwich and Its Application as Electrode in Supercapacitors [J].
Fan, Zhuangjun ;
Yan, Jun ;
Zhi, Linjie ;
Zhang, Qiang ;
Wei, Tong ;
Feng, Jing ;
Zhang, Milin ;
Qian, Weizhong ;
Wei, Fei .
ADVANCED MATERIALS, 2010, 22 (33) :3723-+
[9]   Mesoporous Carbon Incorporated Metal Oxide Nanomaterials as Supercapacitor Electrodes [J].
Jiang, Hao ;
Ma, Jan ;
Li, Chunzhong .
ADVANCED MATERIALS, 2012, 24 (30) :4197-4202
[10]  
Karina C.G., 2005, ADV FUNCT MATER, V15, P1125