An In Situ Ionic-Liquid-Assisted Synthetic Approach to Iron Fluoride/Graphene Hybrid Nanostructures as Superior Cathode Materials for Lithium Ion Batteries

被引:64
作者
Li, Bingjiang [2 ]
Rooney, David W. [3 ]
Zhang, Naiqing [1 ,2 ]
Sun, Kening [1 ,2 ]
机构
[1] Harbin Inst Technol, State Key Lab Urban Water Resource & Environm, Harbin 150090, Heilongjiang, Peoples R China
[2] Harbin Inst Technol, Dept Chem, Acad Fundamental & Interdisciplinary Sci, Harbin 150001, Peoples R China
[3] Queens Univ Belfast, QUILL Res Ctr, Sch Chem & Chem Engn, Belfast BT9 5AG, Antrim, North Ireland
关键词
graphene; high rate; ionic liquid; iron fluoride; lithium ion batteries; METAL FLUORIDE NANOCOMPOSITES; REDUCED GRAPHENE; NANOSHEET COMPOSITES; REVERSIBLE CAPACITY; CYCLIC STABILITY; RATE PERFORMANCE; ANODE MATERIAL; GRAPHITE; FEF3; NANOPARTICLES;
D O I
10.1021/am400873e
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A tactful ionic-liquid (IL)-assisted approach to in situ synthesis of iron fluoride/graphene nanosheet (GNS) hybrid nanostructures is developed. To ensure uniform dispersion and tight anchoring of the iron fluoride on graphene, we employ an IL which serves not only as a green fluoride source for the crystallization of iron fluoride nanoparticles but also as a dispersant of GNSs. Owing to the electron transfer highways created between the nanoparticles and the GNSs, the iron fluoride/GNS hybrid cathodes exhibit a remarkable improvement in both capacity and rate performance (230 mAh g(-1) at 0.1 C and 74 mAh g(-1) at 40 C). The stable adhesion of iron fluoride nanoparticles on GNSs also introduces a significant improvement in long-term, cyclic performance (115 mAh g(-1) after 250 cycles even at 10 C). The superior electrochemical performance of these iron fluoride/GNS hybrids as lithium ion battery cathodes is ascribed to the robust structure of the hybrid and the synergies between iron fluoride nanoparticles and graphene.
引用
收藏
页码:5057 / 5063
页数:7
相关论文
共 55 条
[11]   Enhanced reversible lithium storage in a nanosize silicon/graphene composite [J].
Chou, Shu-Lei ;
Wang, Jia-Zhao ;
Choucair, Mohammad ;
Liu, Hua-Kun ;
Stride, John A. ;
Dou, Shi-Xue .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (02) :303-306
[12]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[13]   Ionic liquids for soft functional materials with carbon nanotubes [J].
Fukushima, Takanori ;
Aida, Takuzo .
CHEMISTRY-A EUROPEAN JOURNAL, 2007, 13 (18) :5048-5058
[14]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[15]   PREPARATION OF GRAPHITIC OXIDE [J].
HUMMERS, WS ;
OFFEMAN, RE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1958, 80 (06) :1339-1339
[16]   Are ionic liquids really a boon for the synthesis of inorganic materials? A general method for the fabrication of nanosized metal fluorides [J].
Jacob, David S. ;
Bitton, Liora ;
Grinblat, Judith ;
Felner, Israel ;
Koltypin, Yuri ;
Gedanken, Aharon .
CHEMISTRY OF MATERIALS, 2006, 18 (13) :3162-3168
[17]   Fabrication of FeF3 Nanoflowers on CNT Branches and Their Application to High Power Lithium Rechargeable Batteries [J].
Kim, Sung-Wook ;
Seo, Dong-Hwa ;
Gwon, Hyeokjo ;
Kim, Jongsoon ;
Kang, Kisuk .
ADVANCED MATERIALS, 2010, 22 (46) :5260-5264
[18]   Synthesis of Phase Transferable Graphene Sheets Using Ionic Liquid Polymers [J].
Kim, TaeYoung ;
Lee, HyunWook ;
Kim, JongEun ;
Suh, Kwang S. .
ACS NANO, 2010, 4 (03) :1612-1618
[19]   Raman spectra of graphite oxide and functionalized graphene sheets [J].
Kudin, Konstantin N. ;
Ozbas, Bulent ;
Schniepp, Hannes C. ;
Prud'homme, Robert K. ;
Aksay, Ilhan A. ;
Car, Roberto .
NANO LETTERS, 2008, 8 (01) :36-41
[20]  
Lee SW, 2010, NAT NANOTECHNOL, V5, P531, DOI [10.1038/NNANO.2010.116, 10.1038/nnano.2010.116]