Periodic and subharmonic solutions for a 2nth-order difference equation involving p-Laplacian

被引:20
作者
Deng, Xiaoqing [1 ]
Liu, Xia [2 ]
Zhang, Yuanbiao [3 ]
Shi, Haiping [4 ]
机构
[1] Hunan Univ Commerce, Sch Math & Stat, Changsha 410205, Hunan, Peoples R China
[2] Hunan Agr Univ, Oriental Sci & Technol Coll, Changsha 410128, Hunan, Peoples R China
[3] Jinan Univ, Packaging Engn Inst, Zhuhai 519070, Peoples R China
[4] Guangdong Construct Vocat Technol Inst, Basic Courses Dept, Guangzhou 510450, Guangdong, Peoples R China
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2013年 / 24卷 / 03期
基金
中国国家自然科学基金;
关键词
Periodic and subharmonic solutions; 2nth-order; Functional difference equations; Discrete variational theory; p-Laplacian; BOUNDARY-VALUE-PROBLEMS; MULTIPLE POSITIVE SOLUTIONS; HAMILTONIAN-SYSTEMS; VARIATIONAL-METHODS; EXISTENCE;
D O I
10.1016/j.indag.2013.04.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By using the critical point theory, some new criteria are obtained for the existence and multiplicity of periodic and subharmonic solutions to a 2nth-order nonlinear difference equation containing both advance and retardation involving p-Laplacian. The proof is based on the Linking Theorem in combination with variational technique. Our results generalize and improve the results in the literature. (C) 2013 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:613 / 625
页数:13
相关论文
共 43 条
[1]  
Agarwal R.P., 1997, Advanced Topics in Difference Equations
[2]   Multiple positive solutions of singular discrete p-Laplacian problems via variational methods [J].
Agarwal, Ravi P. ;
Perera, Kanishka ;
O'Regan, Donal .
ADVANCES IN DIFFERENCE EQUATIONS, 2005, 2005 (02) :93-99
[3]  
Agarwal RP, 2004, NONLINEAR ANAL-THEOR, V58, P69, DOI 10.1016/j.na.2004.11.012
[4]  
Agarwal RP., 1992, DIFFERENCE EQUATIONS
[5]  
Ahlbrandt C.D., 1996, DISCRETE HAMILTONIAN
[6]   THE (N,N)-DISCONJUGACY OF A 2ND-ORDER LINEAR DIFFERENCE EQUATION [J].
AHLBRANDT, CD ;
PETERSON, A .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1994, 28 (1-3) :1-9
[7]  
[Anonymous], COMMUN MATH ANAL
[8]  
[Anonymous], FIELDS I COMMUN
[9]   Existence of three positive pseudo-symmetric solutions for a one dimensional discrete p-Laplacian [J].
Avery, R ;
Henderson, J .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2004, 10 (06) :529-539
[10]   CRITICAL-POINT THEOREMS FOR INDEFINITE FUNCTIONALS [J].
BENCI, V ;
RABINOWITZ, PH .
INVENTIONES MATHEMATICAE, 1979, 52 (03) :241-273